

- Attempt all the questions
- This paper consists of 150 objective type questions.
- Each of these question carries 1 marks. 1/3 mark for each wrong answer.
- Pattern of questions : MCQs
- Total marks
: 150
- Duration of test : 3 Hours

VPM CLASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429714
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

1. For the smallest positive root of transcendental equation $x-e^{-x}=0$, interval is
(A) $(0,1)$
(B) $(-1,0)$
(C) $(1,2)$
(D) $(2,3)$
2. A root of the equation $x^{3}-x-1=0$ lies between 1 and 2 . Its approximate value as obtained by applying Bisection method 3 times is
(A) 1.375
(B) 1.625
(C) 1.125
(D) 1.25
3. Performing 3 iterations of bisection method the smallest positive approximate root of equation
$x^{3}-5 x+1=0$ is
(A) 0.25
(B) 0.125
(C) 0.50
(D) 0.0625
4. The number of positive roots of the equation
$-3 x+5=0$ is:
(A) 1
(B) 2
(C) 3

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) None of these
5. The equation of tangent at $(-4,-4)$ on the curve $x^{2}=-4 y$ is
(A) $2 x+y+4=0$
(B) $2 x-y-12=0$
(C) $2 x+y-4=0$
(D) $2 x-y+4=0$
6. At what point on the curve $x^{3}-8 a^{2} y=0$, the slope of the normat is
(A) (a, a)
(B) $(2 a,-a)$
(C) $(2 a, a)$
(D) None of these
7. If $z=u v$

$$
\begin{aligned}
& u^{2}+v^{2}-x-y=0 \\
& u^{2}-v^{2}+3 x+y=0
\end{aligned}
$$

then $\frac{\partial z}{\partial x}$ is equal to-
(A)
(B) $\frac{2 u^{2}-v^{2}}{2 u v}$
(C) $\frac{3 u^{2}+v^{2}}{2 u v}$
(D) $\frac{u^{2}-3 v^{2}}{2 u v}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

8. The point $(0,5)$ is closest to the curve $x^{2}+2 y$ at
(A) $(2, \sqrt{2}, 0)$
(B) $(0,0)$
(C) $(2,2)$
(D) None of these
9. Find the point on the curve $4 x^{2}+a^{2} y^{2}=4 a^{2}, 4<a^{2}<8$ that is farthest from the point $(0,-2)$
(A) $(0,1)$
(B) $(-1,0)$
(C) $(0,2)$
(D) $(-2,0)$
10. Let $f(x, y)=(x-2)^{2}(y+3)$. Then
(A) $(2,-3)$ is not a stationary peint of f
(B) f has a local maximum at ($2,-3$)
(C) f has a local minimum at $(2,-3)$
(D) f has neither a local maximum nor a local minimum at $(2,-3)$
11. Solve $\left(D^{2}-2 k D+k^{2}\right) y=e^{x}$
(A) $y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{e^{x}}{2}$
$(B) y=\left(C_{1}+C_{2} x\right) e^{k x}+\frac{e^{x}}{(K+1)^{2}}$
(C) $y=\left(C_{1}+C_{2} x\right) e^{k x}+\frac{e^{x}}{(K-1)^{2}}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $y=\left(C_{1}+C_{2} x\right) e^{k x}+e^{x}$
12. Find P. I. of $(D+I)^{2}\left(D^{2}+D+1\right)^{2} y=e x$.
(A) $\frac{-\mathrm{e}^{\mathrm{x}}}{2}$
(B) $\frac{1}{9} e^{x}$
(C) $\frac{1}{18} e^{x}$
(D) $\frac{1}{36} \mathrm{e}^{\mathrm{x}}$
13. Let $f, g: R^{3} \rightarrow R$ be defined by $f(x, y)=x^{4}+y^{2}: g(x, y)=x^{4}+y^{2}-10 x^{2} y$.

Then at (0,0)
(A) f has a local minimum but not g
(B) g has a local minimum but not f
(C) Both f and g have a local minimum
(D) Neither f nor g has a local minimum
14. Calculate - lim
(A)
(B) 2

(D) 0
15. If $(2,3)$ is a Critical point of $f(x, y)$ and $f_{x x}(2,3) f_{y y}(2,3)-\left[f_{x y}(2,3)\right]^{2}=0$, then

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(A) $(2,3)$ is a Saddle point
(B) $(2,3)$ is a point of local maximum
(C) $(2,3)$ is a point of local minimum
(D) Further investigation is required to determine the nature of the point.
16. If $u=f(y-z, z-x, x-y)$, then
(A) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$
(B) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
(C) $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$
(D) $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
17. If $f(x, y, z)=3 x^{2} y z+5 x y^{2} z+4 z^{4}$ then $x=\frac{\partial f}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial t}{\partial z}$
(A) \mathfrak{f}
(B) $2 \uparrow$
(C) $3 f$
(D) 4 f
18.

(A) $f_{x}(0,0)=1, f_{y}(0,0)=-1$
(B) $f_{x}(0,0)=0, f_{y}(0,0)=0$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(C) $f_{x}(0,0)=0, f_{y}(0,0)=-1$
(D) $f_{x}(0,0)=1, f_{y}(0,0)=0$
19. The volume of the solid bounded by the plane

$$
4 x+2 y+z=10, \quad y=3 x, z=0, x=0
$$

(A) $\int_{0}^{1} \int_{0}^{3 x} \int_{0}^{10-2 y-4 x} d z d y d x$
(B) $\int_{0}^{1} \int_{3 x}^{-2 x+5} \int_{0}^{10-2 y-4 x} d z d y d z$
(C) $\int_{0}^{3} \int_{0}^{y / 3} \int_{0}^{10-2 y-4 x} d z d y d x$
(D) $\int_{0}^{3} \int_{0}^{1} \int_{0}^{10-2 y-4 x} d z d x d y$

20 Evaluate $\iint_{D} e^{x^{2}+y^{2}} d A, D$ is the unit circle centered at the origin.
(A) $2 \pi(e+1)$
(B) $\pi(e-1)$
(C) $\pi\left(e^{2}-1\right)$
(D) $2 \pi(e-1)$
21. Integrate $r \sin \theta$ over the area of the Cardioid $r=a(1+\cos \theta)$ about the initial line.
(A) $\frac{2}{3} a^{3}$
(B) $\frac{4}{3} a$
(C) $\frac{4 \pi}{3} a^{3}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) $3 \frac{2 \pi}{3} a^{3}$
22. The integral $\int_{0}^{1} \frac{\sec x}{x} d x$
(A) Converges to 0
(B) Converges to - 1
(C) Converges to 1
(D) Diverges
23. Let $I=\int_{0}^{a} \int_{y^{2} / 2 a}^{a-\sqrt{a^{2}-y^{2}}} d y d x+\int_{a}^{2 a} \int_{y^{2} / 2 a}^{2 a} V d y d x+\int_{0}^{a} \int_{a+\sqrt{a^{2}-y^{2}}}^{2 a} V d y d x$ on changing order of integration the integral I equal to
(A) $\int_{0}^{2 a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} V d x d y$
(B) $\int_{1}^{2 a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} V d x d y$
(C) $\int_{-a}^{a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} V d x d y$
(D) $\int_{a}^{2 a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} V d x d y$

24 A cubic $f(x)$ vainshes at $x \leq-2$ and has relative minimum/maximum at $x=-1$ and $x=\frac{1}{3}$ if $\int_{-1}^{1} f(x) d x=\frac{14}{3}$, find the cubic $f(x)$.
(A) $f(x)=x^{3}+x^{2}-8$
(B) $f(x)=x^{2}+x^{3}-x+8$
(C) $f(x)=x^{3}+x^{2}-x+2$
(D) $f(x)=x^{2}+x^{3}-2$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

25. The function $f(x)=\sqrt{\left(a x^{3}+b x^{2}+(c x+d)\right.}$ has its non-zero local minimum and maximum values at $x=-2$ and $x=2$ respectively if a is the root of $x^{2}-x-6=0$ then
(A) $a=-2 b=24 \quad c=24$
(B) $a=-2 \quad b=0 \quad c=24$
(C) $a=-2 \quad b=12 \quad c=24$
(D) $a=-2 \quad b=0 \quad c=0$
26. If $f(x)=\left\{\begin{array}{rr}e^{x}, & 0 \leq x \leq 1 \\ 2-e^{x-1}, & 1<x \leq 2 \\ x-e, & 2<x \leq 3\end{array}\right.$
and $g(x)=\int_{0}^{x} f(t) d t, x \in[1,3]$, then
(A) $g(x)$ has local maxima at $x=1+\log _{e} 2$ and local minima at $x=0$
(B) $f(x)$ has local maxima at $x=1$ and local minima at $x=2$
(C) $g(x)$ has no local minima
(D) $f(x)$ has no local maxima
27. Using taylor's polynomial of $\sqrt{(4.01)(3 \cdot 98)}$ the first degree

The approximate value of is equal to
(A) 4
(B) 3.98
(C) 389
(D) 3.88
28. If $z=f(x, y)$ and $x=e^{u}+e^{-v}, y=e^{-u}+e^{v}$ then $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$
(B) $x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$
(C) $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}$
(D) $x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y z}$
29. If $z=f(x, y)$ where $x=\phi(\omega), y=\psi(\omega) \phi(1)=2 \phi^{\prime}(1)=7 \psi(1)=-3 \psi^{\prime}(1)=2 f_{x}(2,-3)=-8$ $f_{y}(2-3)=-3$

Then $\frac{d z}{d \omega}$ at $\omega=1$ is
(A) 42
(B) -42
(C) 62
(D) -62
30. Solve the following L.P.P.

Max

$$
z=5 x_{1}+7 x_{2}
$$

s. t.
$x_{1}+x_{2}$

$3 x_{1}+8 x_{2}$
≤ 24
$10 x_{1}+7 x_{2}$
≤ 34
and $\quad x_{1} \geq 0, x_{2} \geq 0$
(A) $x_{1}=1.6 x_{2}=2.4 z=24.8$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) $x=1.9 x_{2}=2.0 z=23.5$
(C) $x_{1}=2 \cdot 1 x_{2}=1 \cdot 2 z=18 \cdot 9$
(D) None of these
31. The sol ${ }^{\mathrm{n}}$ of $\operatorname{lpp} \max z=2 x_{1}-10 x_{2}$
subject to

$$
x_{1}-x_{2} \geq 0
$$

and

$$
\begin{array}{r}
x_{1}-5 x_{2} \leq-5 \\
x_{1}, x_{2} \geq 0 \text { is }
\end{array}
$$

(A) Is unique
(B) Is bounded
(C) Is unbounded
(D) Does not exist
32. Let $S_{1}=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}+5 x_{2}=2, x_{1}, \geq 0, x_{2} \in R\right\}$

$$
S_{2}=\left\{\left(x_{1}, x_{2}\right) ; 3 x_{1}+5 x_{2}=2, x_{1} \in R x_{2} \in R\right\}
$$

Then the set $S_{1} \cap S_{2}$ is
(A) Convex and unbounded
(B) Not convex but bounded
(C) Both convex and bounded
(D) Neither convex nor bounded
33. The Lpp formulation of the unconstrained optimization problem

$$
\text { Maximize } y=\min \left\{\left|2 x_{1}+5 x_{2}\right|,\left|2 x_{1}-5 x_{2}\right|\right\} x_{1}, x_{2} \geq 0
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) Max y such that $2 x_{1}+5 x_{2}-y \geq 0,2 x_{1}-5 x_{2}-y \geq 0,2 x_{1}-5 x_{2}+y \leq 0, x_{1}, y, x_{2} \geq 0$
(B) Max y such that $2 x_{1}+5 x_{2}+y \leq 0,2 x_{1}-5 x_{2}-y \geq 0,2 x_{1}-5 x_{2}+y \leq 0, x_{1}, x_{2}, y \geq 0$
(C) Max y such that $2 x_{1}+5 x_{2}-y \geq 0,2 x_{1}-5 x_{2}+y=0,2 x_{1}-5 x_{2}+y \leq 0, ; x_{1} x_{2}, y \geq 0$
(D) Max y such that $2 x_{1}+5 x_{2}-y \geq 0,2 x_{1}-5 x_{2}-y=0,2 x_{1}-5 x_{2}-y \leq 0, x_{1}, x_{2}, y \geq 0$
34. If X and Y are two non-empty sets where $f: X \rightarrow Y$, is a function defined such that

$$
f(c)=\{f(x): x \in C\} \text { for } C \subseteq X
$$

and

$$
f^{-1}(D) \quad=\{x: f(x) \in D\} \text { for } D \subseteq Y
$$

for any $A \subseteq Y$ and $B \subseteq Y$, then
(A) $f^{-1}\{f(A)\}=A$
(B) $f^{-1}\{f(A)\}=A$ only if $f(X)=Y$
(C) $f\left\{f^{-1}(B)\right\}=B$ only if $B \subseteq f(x)$
(D) $f\left\{f^{-1}(B)\right\}=B$
35. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions, is
(A) 0
(B) $2^{9}-1$
(C) 168
(D) 2
36. Let p be an odd prime number and T_{p} be the following set of 2×2 matrices

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc

$$
T_{p}=\left\{A\left[\begin{array}{ll}
a & b \\
c & a
\end{array}\right] ; a, b, c \in\{0,1,2, \ldots ., p-1\}\right\}
$$

The number of A in T_{p} such that A is either symmetric or skew-symmetric or both, and det (A) is divisible by p is
(A) $(p-1)^{2}$
(B) $2(p-1)$
(C) $(p-1)^{2}+1$
(D) $2 p-1$
37. Let W be the Subspace of R^{4} given by $W=\{(x, y, z, w): x+y+z+w=0\}$ Then the dimension of W is
(A) 1
(B) 2
(C) 3
(D) 4
38. Eigen vectors of the matrix $\left[\begin{array}{cc}-3 & 12 \\ -2 & 7\end{array}\right]$ corresponding to the eigen values 3 and 1 are respectively
(A)

(C) $\left[\begin{array}{l}2 \\ 3\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]$
39. Let A be a real symmetric matrix of order 4 Then which of the following statement is true about eigen values of A
(A) All eigen values are real
(B) All eigen values are purely imaginary
(C) All eigen values are either real or imaginary
(D) At least one eigen value has non-zero imaginary part
40. The nullity of the matrix $\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$ is
(A) 1
(B) 2
(C) 3
(D) 4
41. Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$

Then
(A) 1

(B)
(C) 3^{2}
(D) 3^{3}
42. For any two unit vector \vec{a} and $\vec{b}|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(A) 0
(B) 1
(C) -1
(D) $|a||b|$
43. The unit tangent vector to the curve $3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2=0$ at the point $(1,0)$ are
(A) $\mathrm{i}+\mathrm{j}=0$
(B) $2 i+2 j+1=0$
(C) $2 \mathrm{i}-\mathrm{j}-2=0$
(D) $\mathrm{j}+2=2 \mathrm{i}$
44. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are the unit vectors such that $(\overrightarrow{\mathbf{a}} \times \mathbf{b}) \cdot(\mathbf{c} \times \overrightarrow{\mathbf{c}})=1$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\frac{1}{2}$ then
(A) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are non-coplanar
(B) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$, dare non-coplanar
(C) $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ are non-parallel
(D) $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{d}}$ are parallel and $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are parallel
45. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circle with
(A) variable radii and a fixed centre at $(0,1)$
(B) variable radif and fixed centre at $(0,-1)$
(C) fixed radius 1 and variable centres along the x-axis
(D) fixed radius 1 and variable centres along the y-axis

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
46. If $y=y(x)=$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$, then $y\left(\frac{\pi}{2}\right)$ equals
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $-\frac{1}{3}$
(D) 1
47. If $x d y=y(d x+y d y), y(1)=1$ and $y(x)>0$. Then, $y(-3)$ is equal to
(A) 3
(B) 2
(C) 1
(D) 0
48. Integrating factor of
$\left\{x(x-1) \frac{d y}{d x}-(x-2) y\right\}=x^{3}(2 x-1)$ is given by -
(A) $\frac{x-1}{x^{3}}$
(B)
(C)

(D) $x^{3} / 2 x-1$
49. Given Lpp. $\operatorname{Max}\left(x_{1}+3 x_{2}\right)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
S. to $\quad 3 x_{1}+x_{2} \leq 3$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

The optimal value of the objective function will be
(A) 1
(B) 3
(C) 9
(D) 10
50. If A and B are two independent events such that $P(A)>0$, and $P(B) \neq 1$, then $P(\bar{A} / \bar{B})$ is equal to
(A) $1-\mathrm{P}(\mathrm{A} / \mathrm{B})$
(B) $1-\mathrm{P}(\mathrm{A} / \overline{\mathrm{B}})$
(C) $\frac{1-P(A \cup B)}{P(B)}$
(D) $\frac{P(\bar{A})}{P(\bar{B})}$
51. There are n urns each containing $(n+1)$ balls such that the ith urn contains ' i ' white balls and ($n+1-1 i$) red balls. Let u_{i} be the event of selecting ith urn, $i=1,2,3, \ldots, n$ and W denotes the event of getting a white balls.

If $P\left(u_{i}\right) \propto i$, where $i=1,2,3, \ldots \ldots ., n$, then $\lim _{n \rightarrow \infty} P(W)$ is equal to
(B) $\frac{2}{3}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
52. Find the missing entry in the following table :

x	0	1	2	3	4
y_{x}	1	3	9	-	81

(A) 30
(B) 29
(C) 31
(D) 28
53. A company manufactures two types of telephone sets A and B. The A type telephone set requires 2 hour and B type telephone requires 4 hours to make. The company has 800 work hour per day. 300 telephone can pack in a day. The selling prices of A and B type telephones are Rs. 300 and 400 respectively For maximum profits company produces x telephone of A type and y telephones of B types. Then except $x \geq 0$ and $y \geq 0$, linear constraints and the probable region of the L.P.P is of the type
(A) $x+2 y \leq 400 ; x+y \leftrightarrows 300 ; M a x z=300 x+400 y$, bounded
(B) $2 x+y \leq 400 ; x+y \geq 300 ; M a x z=400 x+300 y$, unbounded
(C) $2 x+y \geq 400 ; x+y \geq 300 ;$ Maxz $=300 x+400 y$, paralle logram
(D) $x+2 y \leq 400 ; x+y \geq 300 ; M a x z=300 x+400 y$, square
54. The probability that at least one of the events A and B occurs is $\frac{3}{5}$. A and B occur simultaneously with probability $\frac{1}{5}$, then $P(\bar{A})+P(\bar{B})$ is

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $\frac{2}{5}$
(B) $\frac{4}{5}$
(C) $\frac{6}{5}$
(D) $\frac{7}{5}$
55. Consider two events A and B such that $P(A)=\frac{1}{4}, P\left(\frac{B}{A}\right)=\frac{1}{2}, P\left(\frac{A}{B}\right)=\frac{1}{4}$. For each of the following statements, which is true
I. $P\left(A^{c} / B^{c}\right)=\frac{3}{4}$
II. The events A and B are mutually exclusive
III. $P(A / B)+P\left(A / B^{C}\right)=1$
(A) I only
(B) I and II
(C) I and III
(D) II and IIf
56. Consider the following primal Linear Programming Problem (LPP).

Maximize $z=5 x_{1}+2 x_{2}$
subject to $X_{1}-x_{2} \leq 1$

$$
\begin{aligned}
& x_{1}+x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

The dual of this problem has
(A) infeasible optimal solution
(B) unbounded optimal objective values
(C) a unique optimal solution
(D) infinitely many optimal solutions
57. Which of the following sets are convex
(A) $x=\left\{\left[x_{1}, x_{2}\right] ; x_{1} x_{2} \leq 1, x_{1} \geq 0 x_{2} \geq 0\right\}$
(B) $x=\left\{\left[x_{1}, x_{2}\right] ; x_{2}-3 \geq-x_{1}^{2}, x_{1} \geq 0, x_{2}=0\right\}$
(C) $x=\left\{\left[x_{1}, x_{2}\right] ; x_{1} \geq 2, x_{2} \leq 3\right\}$
(D) $\mathrm{x}=\left\{\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] ; \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2} \geq 1, \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2} \leq 4\right\}$
58. A, B, C are three events for which
$P(A)=0.6, P(B)=0.4$ and $P(B)=0.5$,
$P(A \cup B)=0.8, P(A \cap C)=0.3$ and $P(A \cap B \cap C)=0.2$
If $P(A \cup B \cup C) \geq 0.85$ then the interval of values of $P(B \cap C)$ is
(A) $[0.2,0.35]$
(B) $[0.55,0.7]$
(C) $[0.2,0.55]$

(D) none of these

59. For any two independent events E_{1} and E_{2} in a space $S, P\left[\left(E_{1} \cup E_{2}\right) \cap\left(\bar{E}_{1} \cap \bar{E}_{2}\right)\right]$ is equal to
(A) $\leq \frac{1}{4}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc
(B) $>\frac{1}{4}$
(C) $\geq \frac{1}{2}$
(D) $>\frac{1}{2}$
60. Let p be the probability that a man aged y will get into an accident in a year What is the probability that a man among n men of all aged y will get into an açcident first?
(A) $\frac{1}{n}\left(1-(1-p)^{n}\right)$
(B) $\frac{1}{n}\left(1-(1+p)^{n}\right)$
(C) $n\left(1-(1+p)^{n}\right)$
(D) None of these
61. $(1+\Delta)^{-1 / 2} \Delta$ is equal to (where Δ is backward difference operator)
(A) E
(B) $1+\delta^{2}$
(C) δ
(D) Δ
62. If R and R are symmetric relations
(not disjoint) on a set A, then the relation $R \cap R$ ' is
(A) reflexive
(B) symmetric
(C) transitive

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) none of these
63. Which of the following is not correct
(A) $n\left(A \cap B^{\prime}\right)=n(A)-n(A \cap B)$
(B) $A-B=(A \cup B)-A$
(C) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(D) $A \cap(B-C)=A \cap B-A \cup C$
64. For evaluating the integral $\int_{0.2}^{1.4} y d x$ by Trapezoidal rule the error for $0.2<x \$ 1.4$ is
(A) $-\frac{h^{2}}{10} y^{\prime \prime}(x)$
(B) $-\frac{h^{2}}{12} y^{\prime \prime \prime}(x)$
(C) $-\frac{h^{3}}{10} y^{\prime}(x)$
(D) $-\frac{h^{3}}{12} y^{\prime}(x)$
65. Find $d y / d x$ at $x=1$ from the following table by constructing a central difference table.

X	0.7	0.8	0.9	1.0	1.1
Y	0.644218	0.717356	0.783327	0.841471	0.891207
X	1.2	1.3			
Y	0.932039	0.963558			
(A) 0.6407					
(B) 0.5130					
(C) 0.5431					

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) 0.5403

66 By applying Newton's method find the real root near 2 of the equation $x^{4}-12 x+7=0$.
(A) 2.5706
(B) 2.7715
(C) 2.7670
(D) 2.6706
67. Consider the following forward difference table

x	$y=f(x)$	Δy	$\Delta^{2} y$	$\Delta^{3} y$
1	4	9		
2	13		12	
3	34	21	B	c
4	73	a	24	6
5	136	63		

The values of a, b, c respectively
(A) 36, 12, 6
(B) $39,18,6$
(C) $37,17,7$
(D) 39, 12, 7
68. If $A=\{1,2\}, B=\{2,5\}, C=\{5,7\}$ then
$(A \times B) \cap(A \times C)$ is equal to -
(A) $\{(2,5),(1,5)\}$
(B) $\{(2,2),(5,5)\}$
(C) $\{(2,7),(1,5)\}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) None of these

69 The odds that person X speaks the truth are 3:2 and the odds that person Y speaks the truth are $5: 3$. In what percentage of cases are they likely to contradict each other on an identical point.
(A) $\frac{1}{2}$
(B) $\frac{19}{20}$
(C) $\frac{21}{40}$
(D) $\frac{19}{40}$
70. The mean and variance of binomial distribution are 4 and $4 / 3$ respectively. Find $P(X \geq 1)$.
(A) 0.9986
(B) 1.0101
(C) 1.0
(D) None of the
71. The random variable follows the poisson distribution with variance 2 Then $P(x=2 I x>1)$ is
(A) $\frac{3}{e^{2}-3}$
(B)

(C) $\frac{\mathrm{e}^{-2}}{2-3 e^{-2}}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $\frac{\mathrm{e}^{-2}-2}{3 \mathrm{e}^{-2}}$
72. Two events A and B are such that $P\left(A^{c}\right)=0.3 P(B)=0.4$ and $P\left(A \cap B^{c}\right)=0.5$ The $P[B \mid(A \cup$ B^{c},] =
(A) $\frac{2}{3}$
(B) $\frac{1}{4}$
(C) $\frac{3}{4}$
(D) $\frac{4}{5}$
73. If $A=\{a, b, c, d\}$ and $B=\{a, b\}$, then number of relations in $A \times B$ is-
(A) 63
(B) 255
(C) 15
(D) 7
74. The total no of generato of the cyclic group

75. The number of trivial subject of a cyclic group of order 8

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(A) 0
(B) 1
(C) 2
(D) 3
76. Let S denote group of all permutations on the finite set $\{a, b, c, d\}$ under operation of permutation multiplication. Then the order of the sub group of S generated by

$$
\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right) \text { is }
$$

(A) 0
(B) 1
(C) 2
(D) 3
77. The number of distinct group homomorphism from $\left(z_{12} x_{12}\right)$ to $\left(z_{30} x_{30}\right)$ are
(A) 5
(B) 6
(C) 4
(D) infinite
78. Find the remainder when 2^{50} is divided by 9

(C) 2
(D) 3

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
79. Calculate u_{82}, when $u_{75}=2459, u_{80}=2018, u_{85}=1180$ and $u_{90}=402$.
(A) 1800
(B) 1705
(C) 1685
(D) 1601
80. If $M=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b\right.$ are real number $\}+$ and are usual matrix addition and matrix multiplication respectively then $(\mathrm{M},+, \cdot)$ is
(A) a non commutating ring
(B) an integral domain but Not a field
(C) a Skew field but Not a field
(D) a field
81. Suppose U and W are distinct four-dimensional subspace of a vector space V where $\operatorname{dim} \mathrm{V}$ $=6$ then which of the following is the possible dimension of $\mathrm{U} \cap \mathrm{W}$
(A) 3
(B) 4
(C) 5
(D) 6
82. Consider the following sets
$B_{1}=\{(1,1,1),(1,0,1)\}$
$B_{2}=\{(1,1,1),(1,2,3),(2,-1,1)\}$
$B_{3}=\{(1,2,3),(1,3,5),(1,0,1),(2,3,0)\}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
$B_{4}=\{(1,1,2),(1,2,5),(5,3,4)\}$

Which of the above sets are basis for R^{3}
(A) B_{2}, B_{4}
(B) B_{2} only
(C) B_{1}, B_{3}
(D) none of these
83. The total number of linear maps from the vector space $R^{5}(R)$ to the vector space $P_{3}(t)$ (set of polynomial of degree 3) are
(A) 12
(B) 15
(C) 18
(D) 20
84. The number of seven digit integers, with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only, is
(A) 55
(B) 66
(C) 77
(D) 88
85. Let EG with $P(G)>0$ and $P(E \cap F \cap G)=0$. Then, $P\left(E^{C} \cap F^{C} \mid G\right)$ equals
(A) $P\left(E^{c}\right)+P\left(F^{c}\right)$
(B) $P\left(E^{c}\right)-P\left(E^{c}\right)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $P\left(E^{c}\right)-P(F)$
(D) $P(E)-P\left(F^{c}\right)$
86. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}-4 y=1+x^{2}$ is-
(A) $y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{3}{8}+\frac{1}{4} x^{2}$
(B) $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{3}{8}+\frac{1}{4} x^{2}$
(C) $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{3}{8}+\frac{1}{4} x^{2}$
(D) $y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{3}{8}+\frac{1}{4} x^{2}$
87. The differential equation of all circles passing through the origin and having their centres on the x-axis is -
(A) $2 x y \frac{d y}{d x}+x^{2}-y^{2}=0$
(B) $2 x y \frac{d y}{d x}+x^{2}+y^{2} \leq 0$
(C) $2 x y \frac{d y}{d x}+2 x^{2}-y^{2}=0$
(D) $2 x y \frac{d y}{d x}+x^{2}-2 y^{2}=0$
88. Solve $\left(D^{2} 16\right) y=\sin 2 x$, given that $y=0 d y / d x=(5 / 6)$ when $x=0$.
(B) $y=\frac{1}{6} \sin 4 x+\frac{1}{12} \sin 2 x$
(B) $y=\frac{1}{6} \sin 4 x+\frac{1}{12} \cos 2 x$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $y=\frac{1}{3} \sin 4 x+\frac{1}{6} \sin 2 x$
(D) $y=\frac{1}{8} \sin 2 x+\frac{1}{6} \sin 4 x$
89. Find the Pl of differential equation

$$
\left(D^{2}+4 D-12\right) y=(x-1) e^{x}
$$

(A) $\left(4 x^{2}-9 x\right) \frac{e^{2 x}}{4}$
(B) $\frac{1}{64}\left(4 x^{2}-9 x+6\right) e^{2 x}$
(C) $\left(4 x^{2}-9 x+6\right) \frac{e^{2 x}}{4}$
(D) $\frac{1}{64}\left(4 x^{2}-9 x\right) e^{2 x}$
90. Let a and b be positive integers, and suppose Q is defined recursively as follows :

$$
Q(a, b)= \begin{cases}0 & \text { if } a<b \\ Q(a)-b, b)+1 & \text { if } b<a\end{cases}
$$

Find: (i) $Q(2,5)$, (ii) $Q(12,5)$.
(A) $(1,1)$
(B) $(0,0)$
(C) $(0,2)$
(D) $(0,4)$
91. Let $a=i+j$ and $b=2 i-k$, then the point of intersection of the lines $r \times a=b \times a$ and $r \times b=$ $a \times b$ is
(A) $(-1,1,1)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(B) $(3,-1,1)$
(C) $(3,1,-1)$
(D) $(1,-1,-1)$
92. If $\phi(x, y, z)=x y^{2} z$ and $A=x z i-x y^{2} j+y z^{2} k$ find $\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi A)$ at the point $(2,-1,1)$.
(A) $4 \mathrm{i}-2 \mathrm{j}$
(B) $2 \mathrm{i}-4 \mathrm{j}$
(C) $i+2 j+\hat{k}$
(D) $3 i-6$
93. Compute the directional derivative of $f=x^{2}+y^{2}+z^{2}$ at $(1,2,3)$ the direction of the line $x / 3$ $=y / 4=z / 5$. Find the maximum rate of increase of $f a t(1,2,3)$.
(A) $\sqrt{14}$
(B) $2 \sqrt{14}$
(C) $3 \sqrt{14}$
(D) $4 \sqrt{14}$
94. If the volume of a parallelopiped with edges $a=2 i-j-k, b=3 i+2 j+2 k$ and
$c=5 i-\lambda j+3 \lambda k$ be 4 units, determine the value of λ.
(A) $\lambda=1$
(B) $\lambda=1 / 2$
(C) $\lambda=1 / 5$
(D) $\lambda=1 / 7$
95. Function f, where

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if } x^{2}+y^{2} \neq 0 \\ 0, & \text { if } x=y=0\end{cases}
$$

is
(A) f_{n}, f_{y} does not exist
(B) f_{x}, f_{y} is continuous at
(C) $f_{x} \neq f_{y}$
(D) f is differentiable at $(0,0)$ -
96. A number is chosen at random from the numbers 10 to 99 . By seeing the number a man will laugh if product of the disguise is 12 . If he chose three numbers with replacement, then the probability that he will laugh atleast once, is
(A) $1-\left(\frac{31}{45}\right)^{3}$
(B) $1-\left(\frac{43}{45}\right)^{3}$
(C) $1-\left(\frac{42}{43}\right)^{3}$
(D)

97. If X follows a binomial distribution with parameters $n=8$ and $I p=1 / 2$, then $p(|x-4| \leq 2)$ is equal to
(A) $121 / 128$
(B) $119 / 128$
(C) $117 / 128$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) $115 / 128$
98. If two events A and B are such that $P(A)>0$ and $P(B) \neq 1$, then is equal to
(A) $1-P(A / B)$
(B) $1-\mathrm{P}(\overline{\mathrm{A}} / \mathrm{B})$
(C) $\frac{1-P(A \cup B)}{P(\bar{B})}$
(D) $\frac{P(A)}{P(\bar{B})}$
99. Suppose X is a binomial variate $B(5, p)$ and $P(X=2)=P(X=3)$, then p is equal to
(A) $1 / 2$
(B) $1 / 3$
(C) $2 / 3$
(D) None of these
100. One mapping is selected at random from all the mappings of the set $A=\{1,2,3, \ldots, n\}$ into itself. The probability that the mapping selected is one to one is given by
(A) $\frac{1}{\mathrm{n}^{\mathrm{n}}}$
(B)

(D) none of these

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

101. A supplies 20 men who work for 8 hrs a day for 6 days. B supplies 15 men working at 9 hours a day for 7 days and C supplies 10 men working 6 hours a day for 8 days to do a certain job. If Rs. 636 is paid for all the labour, what is C's share ?
(A) 129
(B) 128
(C) 130
(D) 127
102. A and B complete a piece of work in 80 and 120 days respectively. They together start the work but A left after 20 days. After another 12 days C joined B and now they complete the work in 28 more days. In how many days C can complete the work, working alone ?
(A) 114
(B) 116
(C) 112
(D) 113
103. $2,6,30,60,130$,
(A) 210
(B) 216
(C) 200
(D) 160
104. A man travels 7 km towards East, then he turn left and travels 8 kms , again he turns left and travels 10 kms . Finally, he turns left and travels 2 kms . In which direction is he from his starting point?
(A) North - west
(B) West

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) East
(D) North - East
105. Shyam walks 5 km towards East and then turns left and walks 6 km . Again he turns right and walks 9 km . Finally he turns to his right and walks 6 km . How far is he from the starting point?
(A) 26 KM
(B) 21 KM
(C) 14 KM
(D) 9 KM
106. Statement: Should an organization like UNO be dissolved?

Arguments:

1. Yes. With cold war coming to an end, such organizations have no role to play
2. No, In the absence of such organizations theremay be a world war.
(A) Only argument I is strong
(B) Only argument ILI's strong
(C) Either I or II is strong
(D) Neither 1 nor ll is strong
3. Statement: Should there be no place of interview in selection?

Arguments

1. Yes it is very subjective in assessment.
2. No. It is the only instrument to judge candidates' motives and personality.
(A) Only argument I is strong
(B) Only argument II is strong

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) Either I or II is strong
(D) Neither I nor II is strong
108. Question: What is the shortest distance between Devipur and Durgapur ? Statements:

1. Durgapur is 20 kms away from Rampur.
2. Devipur is 15 kms away from Rampur.
(A) I alone is sufficient while II alone is not sufficient
(B) II alone is sufficient while I alone is not sufficient
(C) Either I or II is sufficient
(D) Neither I nor II is sufficient
3. In A Certain Code language "APPROACH" is written as 'YQNSMBAI" then "VERBAL" will be written as
(A) TFPCYN
(B) TFPCYM
(C) TFPYCM
(D) TFPCNY
4. Which diagram represents the relationship among female, mothers and doctors ?

(A)

(B)

(C)

(D)

Direction - (Q 111 and 112) Which one of the given responses would be a meaningful order of the following words ?

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
111. 1. Accident
3. Doctor
5. Police
(A) 1, 3, 4, 2, 5
(B) $1,3,5,4,2$
(C) 1, 2, 3, 4, 5
(D) $1,2,5,4,3$

112

1. Fruit
2. Flower
3. Seed
4. Bud
(A) 1, 2, 3, 4, 5
(B) $4,2,5,3,1$
(C) $5,2,4,3,1$
(D) $5,2,4,1,3$
5. Which one set of letters when sequentially placed at the gaps in the given letter series shall complete it ?
$-b b m-a m b-m-a-b b$
(A) $\mathrm{mb} \mathrm{b} a \mathrm{~b}$ m
(B) $a b m a b$
(C) ma ba m
(D) $a \mathrm{mbb}$ b

Direction - (Q. 114 and 115) Find the missing number from the given alterna
tives.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
114.

(A) 20
(B) 16
(C) 12
(D) 18
115. 2

7

2
?
42
10
(A) 2
(B) 4
(C) 5
(D) 3
116. In a certain language, BUTDER is coded as CVUUFS, BREAD is coded as CSFBE, then how COFFEE is coded?
(A) DPGGFF
(B) GGDPFF
(C) GDRGFF
(D) FFDPGG
117. If CLOUD can be coded as 59432 and RAIN as 1678, how can AROUND be coded ?

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) 614832
(B) 614382
(C) 641382
(D) 461382

Directions - (Q-118-121) Select the one which is different from the other three responses.
118. (A) Paper: Pencil
(B) Head: Cap
(C) Ink : Inkpot
(D) Present : Wrapper
119. (A) Sky- Stars
(B) Moon- Planets
(C) Stadium- Players
(D) University - Students
120. (A) BFJQ
(B) RUZG
(C) GJOV
(D) $H Q X$
121.
(A) 117-39
(B) 164-41
(C) 198-66
(D) 213-71

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc
122. B is D's mother and C is D's brother. H is E's daughter whose wife is D. How are E and C related?
(A) Father-in-law
(B) Brother-in-law
(C) Uncle
(D) Brother
123. Among the members of the club, some are lady doctors. Indicate which diagram does not imply this statement.
(Note : M = Member; F = Female and D = Doctors)
(A)

(B)

(C)

(D)

124. From the alternatives select the set which is most like the given set:

Given set : $(4,10,15)$
(A) $(3,6,12)$
(B) $(2,8,10)$
(C) $(5,12,18)$
(D) $(7,10,18)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

125. A compass (or mariner compass) is a navigational instrument for finding directions on the Earth. It consists of a magnetized pointer free to align itself accurately with Earth's magnetic field, which is of great assistance in navigation.

Inference: Most modern ships use a compass to navigate their way around oceans.
(A) The inference is definitely true, i.e., it directly follows from the statement of facts given
(B) The inference is probably true, though not directly true, in the light of the statement of facts given.
(C) The inference is uncertain, i.e., data is insufficient to decide whether the inference is true or false
(D) The inference is probably false, though not definitely false, in the light of the statement of facts given

Directions - (Q. 126-132) Select the related letters/word/number from the given alternatives.
126. Camera : Lens :: Flash ?
(A) Bulb
(B) Night
(C) Light
(D) Shutter
127. House : Rent: : Capital ?
(A) Interest
(B) Investment
(C) Country
(D) Money
128. NUMBER : UNBMRE : : GHOST: ?

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(A) HOGST
(B) HOGTS
(C) HGSOT
(D) HGOST
129. SKIP : RIFL: : KYKZ :?
(A) WJHV
(B) WJVH
(C) JWVH
(D) JWHV
130. HKNQ: GDAX:: SVYB :?
(A) TQMK
(B) ROLI
(C) JWVH
(D) ADGL
131. $19: 37:: 26: ?$
(A) 52
(B) 51
(C) 46
(D) 43
132.
: DE : ?
(A) 90
(B) 60

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(C) 120
(D) 210

Direction : (Q-133-134) A series is given with one term missing. Choose the correct alternative from the given ones that will complete the series.
133. DIB, HMF, LQJ, ?
(A) OTM
(B) QBQ
(C) PVO
(D) PUN
134. $1,2,4,8$?
(A) 8
(B) 9
(C) 16
(D) 32
135. Statement: My first and foremost task is to beautify this city if city X and Y can do it \qquad why can't we do it. __Statement of Municipal Commissioner of city Z after taking over charge.

Conclusion. 1. The people of city Z are not aware about the present state of ugliness of their city.
II. The present Commissioner has worked in city X and Y and has good experience of beautifying cities.
(A) It only conclusion I follows
(B) If only conclusion II follows
(C) If either I or II follows

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) If neither I nor II follows
question 136 to 140 based on the following information:
Aliya is the youngest member of the family. Her cousin Boman's paternal grandmother, Chaaru, is her maternal grandmother, while Bomans' maternal grandfather, Diskar, is her paternal grandfather. Mother of Aliya's Father, Fenil and Boman's mother, Geet is Esha. Hitharth if Fenil and Geet's father-in-law. Ilesh Geet's husband is very fond of jugal, his only brother-in-law's son. Kajri warns her brother llesh not to spoil her son Jugal by pampering him too much.
136. How is Dinkar's daughter related to Jugal's father?
(A) Sister-in-law
(B) Sister
(C) Wife
(D) Daughter
137. What is the total number of females in the family?
(A) 4
(B) 5
(C) 6
(D) Cannot be determined
138. What is the relationship of Hitarth with Boman and Kajri respectively?
(A) Father, Paternal grandfather
(B) Maternal grandfather, Father
(C) Maternal grandfather, Father-in-law
(D) Paternal grandfather, Father
139. How many grandsons does Esha have?

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) 1
(B) 2
(C) 3
(D) Cannot be determined
140. Who is Boman's aunt's in-laws?
(A) Chaaru and Hitarth
(B) Chaaru and Dinkar
(C) Esha and Dinkar
(D) Hitarth and Esha

Instruction for question 141 to 142 :
Find the odd man out
141. (A) Cobbler
(B) Student
(C) Plumber
(D) Carpenter
142. (A) Chocolate
(B) Books
(C) Sugar
(D) Honey

Direction for question 143 and 144:
Astronomers were trying to find the weights of 6 planets Mars, Venus, Pluto, Jupiter, Mercury and Saturn. They found that the number of planets lighter than Mars was equal to

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
the number of planets heavier than Venus. Saturn was heavier than Mars and Mercury was heavier than Pluto. Venus was lighter than Mars. Saturn was not the heaviest planet.
143. Which is the third lightest planet among the given 6 planets?
(A) Mars
(B) Jupiter
(C) Saturn
(D) Venus
144. If Jupiter is the heaviest planet, then which is the lightest planet among the 6 planets?
(A) Venus
(B) Mercury
(C) Pluto
(D) Mars

Directions for questions 145 and 146:
Five friends: Ajay, Binoy, Charak, Deepak and Goldy had recently written a high school examination. The following statements are known about their results:

1. Ajay did not secure 1 st rank. Binoy did not secure 2nd rank.
2. Deepak did not secure 2nd rank. Goldy did not secure 3rd rank.
3. Charak had secured a rank among top three. Deepak did not secure rank among top three.
4. Ajay had secured rank among top three. Charak did not secure rank among top three.
5. Deepak had secured rank among top three. Goldy had secured rank among top three.

In each of the five statements above one statement is true and the other one is false, not necessarily in that order.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
145. Who among the following secured 3rd rank?
(A) Ajay
(B) Biony
(C) Charak
(D) Deepak
146. Who among the following had secured 1 st rank?
(A) Ajay
(B) Binoy
(C) Charak
(D) Deepak
147. The stated aims of the United Nations are to maintain international peace and security, to safeguard human rights, to provide a mechanism for international law, to promote social and economic progress, to improve living standards, and to fight diseases. It provides the opportunity to countries to balance global interdependence and national interests when addressing international problems. Most hations have now joined the UN.

Inference: A dispute between two nations is usually solved by the United Nations.
(A) The inference is definitely true, i.e., it directly follows from the statement of facts given
(B) The inference is probably true, though not directly true, in the light of the statement of facts given.
(C) The inference is uncertain, i.e., data is insufficient to decide whether the inference is true or false
(D) The inference is probably false, though not definitely false, in the light of the statement of facts given

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(E) The inference is definitely false, i.e., it cannot possibly be inferred from the statement of facts given
148. All the government banks, which currently shut down at 12 P.M. should be open to the public till at least 3 P.M. every day.
A. No: This would increase the risk of investing in the stock market.
B. Yes: Since they are open only till 12 P.M. government run banks are losing customers to privately owned banks.
C. No: This would lead to a reduction in efficiency of people working in government run banks.
D. Yes: India has a population of more than 1 billion and there is a huge number of banking customers.
(A) Only arguments C and D are weak
(B) Only arguments B and C are strong
(C) Only arguments B is weal
(D) All arguments are weak
149. Indian students should pursue higher education in India rather than going abroad.
A. Yes: This would save the students and their parents a lot of money.
B. No: The quality of higher education is much better abroad than in India.
C. Yes: India has some of the top MBA colleges in the world.
D. No: India has more coaching institutes than any country in the world.
(A) Only arguments C and D are weak
(B) Only arguments A and D are strong
(C) Only arguments D is strong
(D) All arguments are weak

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
150. Which of the following diagrams indicates the best relation between Football, Player and Field?
(A)

(B)

(C)

(D)

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	A	A	D	A	D	C	B	D	C	A	C	D	D	C	D	B	D	C	B	B
Ques.	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	B	D	A	C	B	B	B	B	D	A	C	A	A	D	A	D	C	A	A	B
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	D	B	C	C	C	A	A	C	C	B	B	C	A	C	A	C	C	A	A	A
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	C	B	B	A	D	D	B	A	D	A	B	B	B	B	C	D	B	C	B	A
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	A	B	D	C	C	D	A	A	D	C	C	A	B	D	D	B	B	C	A	C
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	B	C	A	A	C	B	A	D	B	A	B	D	C	A	D	A	B	A	B	A
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	$\mathbf{1 3 5}$	136	137	138	139	140
Ans.	B	B	B	C	C	A	A	C	D	B	B	A	D	C	D	B	D	D	D	C
Ques.	141	142	143	144	145	146	147	148	149	150										
Ans.	B	B	D	C	C	A	B	B	A	C										

HINTS AND SOLUTION

1.(A) Condition for root to lie between (a, b) is $f(a)$ is negative and $f(b)$ is positive

Given function $f(x)=x-e^{x}$
At $x=0, f(0)=-1(-v e)$
and at $x=f, f(1)=1-e^{-1}=$ (+ ve $), \frac{e-1}{e}$ therefore smallest positive root will lie in interval $(0$, 1).
2.(A) If root of $f(x)$ lies between x_{1} and x_{2} then $f\left(x_{1}\right)$ will be negative and $f\left(x_{2}\right)$ will be positive

$$
\text { Let } f(x)=x^{3}-x-1
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Bisected value of x	Sign of $f(x)$	Conclusion
at $x=1$ at $x=2$	$f(1)$ is negative $f(2)$ is positive	Root lies between $1 \& 2$
at $x=\frac{1+2}{2}=1.5$	$f(1.5)$ is Positive	Root lies between 1 and 1.5
at $x=\frac{1+1.5}{2}=1.25$	$f(1.25)$ is negative	Root lies between $(1.25,1.5)$
at $x=\frac{1.25+1.5}{2}$	$x=1.375$	Approximate yalue of x is (1.375)

3.(D) For smallest positive root, start from 0

X	Sign of $f(x)$	- Conclusion
at $\mathrm{x}=0$ at $\mathrm{x}=1$	$\begin{aligned} f(0) & =0^{3}-0+1 \\ & =1(+v e) \\ f(1) & =1-5+1 \\ & =-3(-v e) \end{aligned}$	$f(0)$ is + ve and $f(1)$ is \therefore root will lie between 0 and 1
at $x=\frac{0+1}{2}$ I iteration	$\mathrm{f}(0.5=(-\mathrm{ve})$	Root wifl lie between 0 and 0.5
$\text { At } x=\frac{0+0.5}{2}=0.25$ II iteration	$\begin{aligned} & f(0.25) \\ & =(0.25)^{2}-5(0.25)+ \\ & =(- \text { ve }) \end{aligned}$	Root will lie between 0 and 0.25
at $x=\frac{0+0.25}{2}=0.125$ III iteration	$\begin{aligned} & f(0.125)=(0.125)^{3} \\ & -5(0.125)+1+v e \end{aligned}$	Root lies between 0 and 0.125

4.(A) Let $f(x)=x^{3}-3 x+5$ s since there are two changes of signs in $f(x)$, therefore (x) has at most two positive roots.

We have $f^{\prime}(x)=3 x^{2}-3$. Therefore

$$
f^{\prime}(x)=0 \Rightarrow x= \pm 1
$$

The signs of $f(x)$ at $x=-\infty,-1,1, \infty$ are:

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

x	$-\infty$	-1	1	∞
$f(x)$	-	+	+	+

5.(D) $x^{2}=-4 y \Rightarrow 2 x=-4 \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{-x}{2} \Rightarrow\left(\frac{d y}{d x}\right)_{(-4,-4)}=2$.

We know that equation of tangent is,
$\left(y-y_{1}\right)=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}\left(x-x_{1}\right) \Rightarrow y+4=2(x+4)$
$\Rightarrow 2 x-y+4=0$.
6.(C) $x^{3}-8 a^{2} y=0 \Rightarrow 3 x^{2}-8 a^{2} \cdot \frac{d y}{d x}=0$
$3 x^{2}=8 a \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{8 a^{2}}$
\therefore Slope of the normal $=-\frac{1}{\left(\frac{d y}{d x}\right)}=-\frac{1}{\frac{3 x^{2}}{8 a^{2}}}=-\frac{8 a^{2}}{3 x^{2}}$

Given $\frac{-8 a^{2}}{3 x^{2}}=\frac{-2}{3} \therefore(x, y)=(2 a, a)$.
7.(B) Given that $z=u v$

$$
u^{2}-v^{2}+3 x+y=0
$$

Solving (ii) and (iii), we get
$u^{2}=-x, v^{2}=2 x+y$
$\therefore \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
\begin{aligned}
& =v\left(-\frac{1}{2 v}\right)+u \cdot\left(\frac{1}{v}\right) \\
& =\frac{2 u^{2}-v^{2}}{2 u v}
\end{aligned}
$$

8.(D) Let a point on the curve be (h, k)

Then $\mathrm{h}=2 \mathrm{k}$
Distance $=\mathrm{D}=\sqrt{\mathrm{h}^{2}+(\mathrm{k}-5)^{2}}$
By (i); $\mathrm{D}=\sqrt{2 \mathrm{k}+(\mathrm{k}-5)^{2}}$
$\frac{d D}{d k}=\frac{1}{2 \sqrt{2 k+(k-5)^{2}}} \times 2(k-5)+2=0 \Rightarrow k=4$
So, at $k=4$ function D must be minimum.
Then point will be $(\pm 2 \sqrt{2}, 4)$.
9.(C) Given curve is $4 x^{2}+a^{2} y^{2}=4 a^{2}$
$\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$
Let point $P(a \cos \phi, 2 \sin \phi)$ be on (1), also given a point $Q(0,-2)$.
Let $u=(P Q)^{2}$

$$
=(a \cos \phi)^{2}+(2 \sin \phi+2)^{2}
$$

Differentiating both sides w.r.t. ϕ, we have

$$
\frac{d u}{d \phi}=\cos \phi\left\{\left(8-2 a^{2}\right) \sin \phi+8\right\}
$$

For the extremum value of $u, \frac{d u}{d \phi}=0$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$\Rightarrow \phi=\frac{\pi}{2}$ and $\sin \phi=\frac{4}{\mathrm{a}^{2}-4}$
$\because 4<a^{2}<8$
$\Rightarrow 0<\mathrm{a}^{2}-4<4$

Or

$$
\frac{a^{2}-4}{4}<1
$$

$$
\text { or } \frac{4}{a^{2}-4}>1
$$

$\therefore \sin \phi>1$ (impossible) $\quad \therefore \quad \phi=\pi / 2$

Again, $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{d} \phi^{2}}=\left(8-2 \mathrm{a}^{2}\right) \cos ^{2} \phi+\left(2 \mathrm{a}^{2}-8\right) \sin ^{2} \phi-8 \sin \phi$
$\left.\therefore \frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{d} \phi^{2}}\right|_{\phi=\pi / 2}=0+\left(2 \mathrm{a}^{2}-8\right)-8$

$$
=2\left(a^{2}-8\right)<0
$$

at $(2,-3)$
$f_{x x}=2(-3+3)=$ and
fxx.fyy $-\mathrm{fxy}{ }^{2}=0$
Since at $(2,-3) f x x$ and $f_{x x} . f_{y y}-f x y^{2}$ both are zero So, it is a doubtful case, and so requires further examination.
again $\quad f(x, y)=(x-2)^{2}(y+3), f(2,-3)=0$
then

$$
\begin{aligned}
f(x, y)-f(2,-3)= & (x-2)^{2}(y+3) \\
& >0 \text { if } y>-3 \\
& <0 \text { if } y<-3
\end{aligned}
$$

Thus, $f(x, y)-f(2,-3)$ does not keef the same sign near the origin. Hence f has neither a maximum nor a minimum value at the origin.
11.(C) Here the auxiliary equation is $m^{2}-2 k m+k^{2}$
or $(m-k)^{2}=0$
or
$m=k, k$
\therefore C. F. $=\left(C_{1} x+C_{2}\right) e^{n x}$, where C's are arbitrary constants
and P.I. =
$\left(D^{2}-2 k D+k^{2}\right) e^{x} \frac{1}{\left(1-2 k+k^{2}\right)} e^{x}$

$\left[1 /(k-1)^{2}\right] e^{x}$

The complete solution of the given equation is

$$
y=\left(C_{1} x+C_{2}\right) e^{k x}+\left[e^{x} /(k-1)^{2}\right]
$$

12.(D) Here the auxiliary equation is

$$
m^{2}(m+1)^{2}\left(m^{2}+m+1\right)^{2}=0
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Its roots are $0,0,-1,-1, \frac{1}{2}[-1 \pm i \sqrt{3}]$ twice each.
\therefore C.F. $=\left(C_{1} x+C_{2}\right) e^{0 x}+\left(C_{3} x+C_{4}\right) e^{-x}+e^{-x / 2}\left[\left(C_{5} x+C_{6}\right) \cos \left(\frac{1}{2} \sqrt{3 x}\right)+\left(C_{7} x+C_{8}\right)\right.$ $\left.\sin \left(\frac{1}{2} \sqrt{3 x}\right)\right]$,
where C's are arbitrary constants.
And P.I. $=\frac{1}{D^{2}(D+1)^{2}\left(D^{2}+D+1\right)^{2}} e^{x}$

$$
=\frac{1}{1^{2}(1+1)^{2}\left(1^{2}+1+1\right)^{2}} e^{x}=\frac{1}{36} e^{x}
$$

\therefore Required complete solution is
$y=$ C. F. + P.I. where C.F. and P.IM are given above.
13.(D) $f(x y)=x^{4}+y^{2}$
$g(x, y)=x^{4}+y^{2}-10 x^{2} y$.
$f_{x}=4 x^{3} \quad \& f_{x x}=12 x^{2} \quad f_{x y}=0$
$f y=2 y \quad f y=2$
$f_{x x} f_{y y}-f_{x y}=0 \quad$ at $(x y)=(0,0)$
\Rightarrow has no extremum at $(0,0)$
$g_{x}=4 x^{3}-20 x y$
$g_{x x}=12 x^{2}-20 y$
$g_{y}=2 y-10 \times 2$

$$
g_{y y}=2 \quad g_{x y}=0
$$

$\Rightarrow g_{x x} g_{y y}-g_{x y}<0$
$\Rightarrow g$ has extrema

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

But $g_{x x}=0$ at (0 0)
\Rightarrow does not have minimum.
$f(x y)=\left\{\begin{array}{cc}x^{2}+y^{2} & \text { if } x \text { and } y \text { are rational } \\ 0 & \text { otherwise }\end{array}\right.$
14.(C) First, we will use the path $y=x$. Along this path we have,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{3} x}{x^{6}+x^{2}}=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{4}}{x^{6}+x^{2}}=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{2}}{x^{4}+1}=0
$$

\quad Now, let's try the path $y=x^{3}$. Along this path the limit becomes,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}=\lim _{\left(x, x^{3}\right) \rightarrow(0,0)} \frac{x^{3} x^{3}}{x^{6}+\left(x^{3}\right)^{2}}=\lim _{\left(x, x^{3}\right) \rightarrow(0,0)} \frac{x^{6}}{2 x^{6}}=\lim _{\left(x, x^{3}\right) \rightarrow(0,0)} \frac{1}{2}=\frac{1}{2}
$$

15.(D) If $(2,3)$ is a critical point of $f(x, y)$ and $f_{x x}(2,3) f_{y y}(2,3)-[f x y(2,3)]^{2}=0$
$\Rightarrow(2,3)$ is not a saddle point and further investigation is required to determine the nature of the point.
16.(B) Let $\mathrm{y}-\mathrm{z}=\mathrm{t}_{1}, \mathrm{z}-\mathrm{x}=\mathrm{t}_{2}$ and $\mathrm{x}-\mathrm{y}=\mathrm{t}_{3}$
then $u=f\left(t_{1}, t_{2}, t_{3}\right)$, where each t_{1}, t_{2}, t_{3} are function of x, y and z.
Now by the formula,

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial t_{1}} \cdot \frac{\partial t_{1}}{\partial x}+\frac{\partial u}{\partial t_{2}} \cdot \frac{\partial t_{2}}{\partial x}+\frac{\partial u}{\partial t_{3}} \cdot \frac{\partial t_{3}}{\partial x} \\
& =\frac{\partial u}{\partial t_{1}}(0)+\frac{\partial u}{\partial t_{2}}(-1)+\frac{\partial u}{\partial t_{3}}(1) \text { [by differentiation of (1) } \\
& =-\frac{\partial u}{\partial t_{2}}+\frac{\partial u}{\partial t_{3}} \tag{2}
\end{align*}
$$

Similarly,

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{align*}
\frac{\partial u}{\partial y} & =\frac{\partial u}{\partial t_{1}} \cdot \frac{\partial t_{1}}{\partial y}+\frac{\partial u}{\partial t_{2}} \cdot \frac{\partial t_{2}}{\partial y}+\frac{\partial u}{\partial t_{3}} \cdot \frac{\partial t_{3}}{\partial y} \\
& =\frac{\partial u}{\partial t_{1}}(1)+\frac{\partial u}{\partial t_{2}}(0)+\frac{\partial u}{\partial t_{3}}(-1) \\
& =\frac{\partial u}{\partial t_{1}}-\frac{\partial u}{\partial t_{3}} \tag{3}
\end{align*}
$$

and

$$
\frac{\partial u}{\partial z}=\frac{\partial u}{\partial t_{1}} \cdot \frac{\partial t_{1}}{\partial z}+\frac{\partial u}{\partial t_{2}} \cdot \frac{\partial t_{2}}{\partial z}+\frac{\partial u}{\partial t_{3}} \cdot \frac{\partial t_{3}}{\partial z}
$$

$$
=\frac{\partial u}{\partial \mathrm{t}_{1}}(-1)+\frac{\partial \mathrm{u}}{\partial \mathrm{t}_{2}}(1)+\frac{\partial \mathrm{u}}{\partial \mathrm{t}_{3}}(0)
$$

$$
\begin{equation*}
=-\frac{\partial u}{\partial t_{1}}+\frac{\partial u}{\partial t_{2}} \tag{4}
\end{equation*}
$$

Now on adding (2), (3) and (4), we get the required result.
17. (D) Here $f(x, y, z)$ is a homogeneous function of degree 4,
therefore we have to verify that

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial t}{\partial z}=4 f
$$

Now differentiating f partially wrt x, y, z respectively,
$\partial f / \partial x=6 x y z+5 y^{2} z ; \partial f f \partial y=3 x^{2} z+10 x y z ; \partial f / \partial z=3 x^{2} y+5 x y^{2}+16 z^{3}$

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}
$$

$=x\left(6 x y z+5 y^{2} z\right)+y\left(3 x^{2} z+10 x y z\right)+z\left(3 x^{2} y+5 x y^{2}+16 z^{3}\right)$
$=6 x^{2} y z+5 x y^{2} z+3 x^{2} y z+10 x y^{2} z+3 x^{2} y z+6 x y^{2} z+16 z^{4}$
$=4\left(3 x^{2} y z+5 x y^{2} z+4 z^{4}\right)=4 f$
Therefore Euler's theorem is verified for the given function.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
18. (C) Given $f(x, y)= \begin{cases}y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{0-0}{h} \\
& =0 \\
f_{y}(0,0) & =\lim _{k \rightarrow 0} \frac{f(0,0+k)-f(0,0)}{k} \\
& =\lim _{k \rightarrow 0} \frac{k\left(\frac{-k^{2}}{k^{2}}\right)-0}{k} \\
& =-1
\end{aligned}
$$

19.(B) The first plane $4 x+2 y+z=10$ is the top of the volume and so we have to calculate volume under $z=10-4 x-2 y$ and above the region D in the $x y$-plane

The second plane $y=3 x$ gives one of the sides of the volume
The region D will be the region in the $x y$-plane bounded by $(y=3 x, x=0$ and $z+4 x+3 y=$ 10)

So

$$
0 \leq z \leq 10-4 x-2 y
$$

$3 x \leq y \leq-2 x+5$
$0 \leq x \leq 1$
Then $V=\int_{0}^{1} \int_{3 x}^{-2 x+5} \int_{0}^{10-2 y-4 x} d z d y d x$
20.(B) The region U is defined by,

$$
0 \leq \theta \leq 2 \pi
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
0 \leq r \leq 1
$$

In terms of polar coordinates the integral is then,

$$
\iint_{D} e^{x^{x^{2}+y^{2}}} d A=\int_{0}^{2 \pi} \int_{0}^{1} r e^{r^{2}} d r d \theta
$$

Notice that the addition of the r gives us an integral that we can now do. Here is the work for this integral.

$$
\begin{aligned}
\iint_{D} e^{x^{2}+y^{2}} d A & =\int_{0}^{2 \pi} \int_{0}^{1} r e^{r^{2}} d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{1}{2} e^{r^{2}}\right|_{0} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2}(e-1) d \theta \\
& =\pi(e-1)
\end{aligned}
$$

21.(B) $\iint_{A} r \sin \theta d A$

$$
=\int_{0}^{\pi} \int_{0}^{\mathrm{a}(1+\cos \theta)} r \sin \theta \cdot r d \theta d r
$$

$\int_{0}^{\pi}\left[\int_{0}^{a(1+\cos \theta)} r^{2} \sin \theta d r\right] d \theta$

$$
\begin{aligned}
& =\int_{0}^{a} \sin \theta\left[\frac{1}{3} r^{2}\right]_{0}^{a(1+\cos \theta)} d \theta \\
& =\frac{a^{3}}{3} \int_{0}^{\pi} \sin \theta(1+\cos \theta)^{3} d \theta
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& =\frac{\mathrm{a}^{3}}{3} \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta\left(2 \cos ^{2} \frac{\theta}{2}\right)^{3} d \theta \\
& =\frac{16 \mathrm{a}^{3}}{3} \int_{0}^{\pi} \sin \frac{1}{2} \theta \cos ^{7} \frac{1}{2} \theta d \theta \\
& =\frac{16 \mathrm{a}^{3}}{3} \int_{0}^{\pi / 2} \sin \phi \cos ^{7} \phi \cdot 2 d \phi, \text { where } \theta=2 \phi \\
& =\frac{32 \mathrm{a}^{3}}{3}\left[-\frac{\cos ^{8} \phi}{3}\right]_{0}^{\pi / 2}=\frac{4}{3} \mathrm{a}^{3}
\end{aligned}
$$

22.(D) Since $|\sec x| \geq 1$ for all values of x, we have

$$
\left|\frac{\sec x}{x}\right| \geq \frac{1}{x}
$$

and the integral $\int_{0}^{1} \frac{1}{\mathrm{x}} \mathrm{dx}$ is known to diverge. Hence the given integral is also divergent.
23.(A) Here the integration extends to all points of the space bounded by the circle $y=\sqrt{ }\left(2 a x-x^{2}\right)$
i.e., $x^{2}+y^{2}-2 a x=0$, the parabola $y^{2}-2 a x$; the straight line $x=0$ i.e., y axis and the line x $=2 \mathrm{a}$.

Let A be the point of contact of the tangent $B C$ to the semi-circle which is parallel to x-axis. In changing the order of integration, the given integral breaks up in three integrals : first corresponding to the area $\mathrm{O} A B$, second to the area BCE and third to the area ACD.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Now solving $x^{2}-2 a x+y^{2}=0$ for x, we have $x=a \pm \sqrt{ }\left(a^{2}-y^{2}\right)$.
Clearly lower and upper limits of x for the area $O A B$ are $y^{2} / 2 a$ and $a-\sqrt{ }\left(a^{2}-y^{2}\right)$ and those of y for this area are 0 and a.

The limits of x for the area BCE are from $y^{2} / 2 a$ to $2 a$ and those of y are from a to $2 a$. Again the limits of x for the area $A C D$ are from $a+\sqrt{ }\left(a^{2}-y^{2}\right)$ to $2 a$ and those of y from 0 to a.

Hence, we have
$\int_{0}^{2 a} \int_{\sqrt{\left(2 a x-x^{2}\right.}}^{\sqrt{(a x)}} V d x d y=\int_{0}^{a} \int_{y^{2} / 2 a}^{a-\sqrt{\left(a^{2}-y^{2}\right)}} V d y d x+\int_{a}^{2 a} \int_{y^{2} / 2 a}^{2 a} V d y d x+\int_{0}^{a} \int_{\left.a+\sqrt{\left(a^{2}-y^{2}\right)^{2}}\right)}^{2 a} V d y d x$
24. (C) Since $f(x)$ being a cubic function, $f^{\prime}(x)$ is a quadratic function $f(x)$ has relative minimum and maximum at
$x=-1$ and $x=\frac{1}{3}$, so

$$
f^{\prime}(-1)=f^{\prime}\left(\frac{1}{3}\right)=0
$$

Then $f^{\prime}(x)=a(x+1)\left(x-\frac{1}{3}\right)$

$$
=a\left(x^{2}+\frac{2}{3} x-\frac{1}{3}\right)
$$

Integrating w.r.t. x, we get

$$
\begin{equation*}
f(x)=a\left(\frac{x^{3}}{3}+\frac{x^{2}}{3}-\frac{x}{3}\right)+b \tag{1}
\end{equation*}
$$

where b is constant of integration and $f(-2)=0$
then $a\left(-\frac{8}{3}+\frac{4}{3}+\frac{2}{3}\right)+b=0 \quad \therefore b \frac{2}{3}=a$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
\therefore From (1), $f(x)=\frac{a}{3}\left(x^{3}+x^{2}-x+2\right)$

Also $\quad \int_{-1}^{1} f(x) d x=\frac{14}{3}$
$\Rightarrow \frac{\mathrm{a}}{3} \int_{-1}^{1}\left(x^{3}+x^{2}-x+2\right) d x=\frac{14}{3}$
$\Rightarrow \frac{\mathrm{a}}{3} \int_{-1}^{1}\left(x^{3}+x\right) d x+\frac{a}{3} \int_{-1}^{1}\left(x^{2}+2\right) d x=\frac{14}{3}$
$\Rightarrow 0+\frac{2 \mathrm{a}}{3} \int_{0}^{1}\left(\mathrm{x}^{2}+2\right) \mathrm{dx}=\frac{14}{3}(\because$ First integral is odd and II integral is even $)$
$\Rightarrow \frac{2 \mathrm{a}}{3}\left\{\frac{\mathrm{x}^{3}}{3}+2 \mathrm{x}\right\}_{0}^{1}=\frac{14}{3} \quad \Rightarrow \frac{2 \mathrm{a}}{3}\left(\frac{1}{3}+2\right)=\frac{14}{3}$
$\therefore \mathrm{a}=3$
From (2), $f(x)=x^{3}+x^{2}-x+2$
25.(B) Since $f(x)$ is minimum at $x=-2$ and maximum at $x=2$, let $g(x)=a x^{3}+b x^{2}+c x+d$
$\therefore \mathrm{g}(\mathrm{x})$ is also minimum at $\mathrm{x}=-2$ and maximum at $\mathrm{x}=2$
$\therefore \mathrm{a}<0$
\because a is a root of $x^{2}-x-6=0$ i.e., $x=3,-2$
$\therefore a=-2$
Then $g(x)=-2 x^{3}+b x^{2}+c x+d$

$$
g^{\prime}(x)=-6 x^{2}+2 b x+c=-6(x+2)(x-2)
$$

$\{\because g(x)$ is minimum at $x=-2$ and maximum at $x=2\}$
On comparing we get

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Since minimum and maximum values are positive
$\therefore g(-2)>0 \quad \Rightarrow \quad 16<48+d<0 \quad \Rightarrow \quad d>32$
and $g(2)>0$
$\Rightarrow \quad-16+48+d>0 \Rightarrow \quad d>-32$
It is clear d>32.
Hence $a=-2, b=0, c=24, d>32$.
26.(B) Given,

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Also, $\quad g^{\prime \prime}(x)=\left\{\begin{array}{cc}e^{x}, & 0 \leq x \leq 1 \\ -e^{x-1}, & 1<x \leq 2 \\ 1, & 2<x \leq 3\end{array}\right.$

At $x=1+\log _{e} 2$,
$g^{\prime \prime}\left(1+\log _{e} 2\right) \quad=-e^{\log _{e} 2}<0, g(x)$ has a local maximum.

Also, at

$$
x=e,
$$

$g^{\prime \prime}(e)=1>0, g(x)$ has a local minima.
$\because f(x)$ is discontinuous at $x=1$, then we get local maxima at $x=1$ and local minima at $x=2$
Hence, (b) is the correct answer.
27.(B) here $f(x, y)=\sqrt{x y}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\sqrt{y}}{2 \sqrt{x}}=\frac{1}{2} \sqrt{\frac{y}{x}} \\
& \frac{\partial f}{\partial x}=\frac{1}{2} \sqrt{\frac{x}{y}}
\end{aligned}
$$

here Let $\mathrm{h}=0.01 \mathrm{k}=-0.02$

$$
a=4 \quad b=4
$$

$$
\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(x, y)=h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y}
$$

$$
=\frac{0.01 x-0.02 y}{2 \sqrt{x y}}
$$

$$
=\frac{-0.01 \times 4}{8}
$$

$$
=-0.005
$$

By Taylor's polynomial

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$f(4.01,3 \cdot 98)=\sqrt{4.01 \times 3.98}=f(4,4)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(4,4)+\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(4,4)+\ldots \ldots \ldots$.

$$
\begin{aligned}
& =4+(-0.005) \times 4 \\
& =3.98
\end{aligned}
$$

28.(B) Here

$$
\begin{equation*}
\frac{\partial x}{\partial u}=e^{u}, \frac{\partial y}{\partial u}=-e^{-u} \tag{1}
\end{equation*}
$$

$\frac{\partial x}{\partial v}$ and

$$
\begin{equation*}
\frac{\partial x}{\partial v}=-e^{-v}, \frac{\partial y}{\partial v}=-e^{v} \tag{2}
\end{equation*}
$$

Now taking z as a composite function of x and y, we have

$$
\begin{align*}
\frac{\partial z}{\partial u} \quad & =\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \\
& =\frac{\partial z}{\partial x} e^{u}-\frac{\partial z}{\partial y} e^{-v} \tag{3}
\end{align*}
$$

$$
[b y(1)]
$$

and

$$
\begin{align*}
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \\
& =\frac{\partial z}{\partial x}\left(-e^{-v}\right)+\frac{\partial z}{\partial y}\left(-e^{-v}\right) \quad[b y(2)] \tag{4}
\end{align*}
$$

Subtracting (4) from (3), we obtain

$$
\begin{aligned}
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x}\left(e^{u}+e^{-v}\right)-\frac{\partial z}{\partial y}\left(e^{-u}-e^{v}\right) \\
& =x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}
\end{aligned}
$$

29. (D) We have $z=f(x, y)$
and

$$
\begin{array}{llll}
x=2 & y=-3 & \text { at } & w=1 \\
\frac{\partial x}{\partial w}=7 & \frac{\partial y}{\partial w}=2 & \text { at } & w=1
\end{array}
$$

Toll Free: 1800-2000-092
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\left.\frac{\partial z}{\partial x}\right|_{(2,-3)}=-8 & \left.\frac{\partial z}{\partial y}\right|_{(2,-3)}=-3 \\
\left(\frac{d z}{d \omega}\right)_{\omega=1} & =\left(\frac{\partial z}{\partial x}\right)_{\omega=1}\left(\frac{d x}{d \omega}\right)_{\omega=1}+\left(\frac{\partial z}{\partial y}\right)_{\omega=1}\left(\frac{d y}{d \omega}\right)_{\omega=1} \\
& =-8 \times 7-3 \times 2 \\
& =-56-6 \\
& =-62
\end{aligned}
$$

30. (A) Let us draw the lines:

$$
\begin{aligned}
x_{1}+x_{2} & =4 \\
3 x_{1}+8 x_{2} & =24 \\
10 x_{1}+7 x_{2} & =35
\end{aligned}
$$

and

$$
x_{1}=0, x_{2}
$$

which correspond to the inequalities of the given constraints. On considering the solution space for each of the given inequality, we find that the common solution space, represented by the shaded area OABCD, is the feasible region.

Now to search the maximum value of z which is at one of the corners of the polygon OABCD, we find that

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

At $\mathrm{A}(3.5,0) ; \mathrm{z}=5 \times 3.5+7.0=17.5$
At $B\left(\frac{7}{31}, \frac{5}{3}\right) ; 2=5 \frac{7}{8}+7 \frac{5}{3}=23.3$

At $C(1.6,2.4) ; z=5 \times 1.6+7 \times 2.4=24.8$
At $D(0,3) ; z=5.0+7.3=21$
Thus z is maximum at C where $x_{1}=1.6, x_{2}=2.4$ and max. $z=24.8$
31.(C) The bounding lines corresponding to the inequalities of the given constraints are

$$
\begin{aligned}
x_{1}-x_{2} & =0 \\
x_{1}-5 x_{2} & =-5
\end{aligned}
$$

and

$$
x_{1}=0, x_{2} \quad=0 .
$$

Draw these lines in a two dimensional space and consider the solution space for each given inequality. We find that the feasible region i.e. their common solution space is unbounded from one side.

But it is cleap from the figure that the objective function z attains its minimum value at the point A which is the intersection of the two lines $x_{1}-x_{2}=0$ and $-x_{1}+5 x_{2}=5$. Solving them we find that $x_{1}=x_{2}=\frac{5}{4}$. but optional sol ${ }^{n}$ is unbounded.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
32.(A) here

$$
S_{1}=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}+5 x_{2}=2, x_{1}, \geq 0, x_{2} \in R\right\}
$$

$$
S_{2}=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}+5 x_{2}=2, x_{1}, \in R x_{2} \in R\right\}
$$

$S_{1} \cap S_{2}=S_{1}$
and S_{1} represents a line in 2D in upperhalf plane and S_{1} be convex and unbounded
33.(A) Given Ipp Maximize $y=\min \left\{\left|2 x_{1}+5 x_{2}\right|,\left|2 x_{1}-5 x_{2}\right|\right\} ; x_{1}, x_{2} \geq 0$
it can be written as

Maximize y

Subject to constraint $\quad\left|2 x_{1}+5 x_{2}\right| \geq y$
and

$$
\left|2 x_{1}-5 x_{2}\right| \geq y
$$

\{if $|x| \geq a$ then $x \leq-a$ or $x \geq a$
So maximize y
Subject to constraints $2 x_{1}+5 x_{2} \geq y$

$$
2 x_{1}+5 x_{2} \leq-y
$$

$$
\text { and } x_{1} x_{2} \geqslant 0
$$

but $2 x_{1}+5 x_{2} \leq-y$ can not hold for $x_{1}, x_{2} \geq 0$
\Rightarrow Lpp Max y

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc

S to $\quad 2 x_{1}+5 x_{2} \geq y$
$2 x_{1}-5 x_{2} \geq y$
$2 x_{1}-5 x_{2} \leq-y$
and

$$
x_{1} x_{2} \geq 0
$$

$\Rightarrow \operatorname{Max} y$
S. to
$2 x_{1}+5 x_{2}-y \geq 0$
$2 x_{1}-5 x_{2}-y \geq 0$
$2 x_{1}-5 x_{2}+y \leq 0$
34.(D) Since, only (c) satisfy given definition
ie, $\quad f\left\{f^{-1}(B)\right\} \quad=B$
Only, if
35.(A) Since, $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is linear equation in three variables and that could have only unique, no solution or infinitely many solution.
\therefore It is not possible to have two solutions.
Hence, number of matrices A is zero.
36.(D)
$a, b, c \in\{0,1,2, \ldots, p-1\}$
If A is skew-symmetric matrix, then $a=0, b=-c$

$$
\therefore \quad|A|=-\mathrm{b}^{2} .
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

Thus, p divides $|\mathrm{A}|$ only when $\mathrm{b}=0$
Again, if A is symmetric matrix, then $b=c$ and $|A|=a^{2}-b^{2}$.
This, p divides $|A|$ if either p divides $(a-b)$ or p divides $(a+b)$.
p divides $(a-b)$, only when $a=b$
ie, $a=b \in\{0,1,2, \ldots,(p-1)\}$
ie,

> p choices
p divides $(a+b)$.
$\Rightarrow \mathrm{p}$ choices, including $\mathrm{a}=\mathrm{b}=0$ included in (i)
\therefore Total number of choices are $(p+p-1)=2 p-1$.
Hence, (d) is the correct option.
37.(C) Since $W \neq R^{4}$ eg $(1,2,3,4) \notin W$

Thus dim W < 4
now

$$
u_{1}(1,-1,0,0) \text { and } u_{2}=(0,0,-1,1)
$$

$$
u_{3}=(0,1,-1,0)
$$

are three independent vectors in W
Thus $\operatorname{dim} \mathrm{W}=8$
So $\left(\mu_{1}, u_{2}, u_{3}\right)$ can form a basis of W
38.(A) Given Matrix $A=\left[\begin{array}{cc}-3 & 12 \\ -2 & 7\end{array}\right]$
if $\left[v_{1} v_{2}\right]^{\mathrm{t}}$ be the eigenvector corresponding to eigenvalue $\lambda=3$

Then

$$
\left[\begin{array}{cc}
-6 & 12 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{array}{ll}
& -6 v_{1}+12 v_{2}=0 \\
\Rightarrow \quad & v_{1}=2 \quad v_{2}=1
\end{array}
$$

So $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is one of the eigen vector corresponding to $\lambda=3$
Now if $\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$ be the eigen vector corresponding to $\lambda=1$
So $\left[\begin{array}{cc}-4 & 12 \\ -2 & 6\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
given $w_{1}=3 \quad w_{2}=1$
So $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is one of the eigen vector corresponding to λ
39.(A) By the properties of Eigen values of real symmetric matrix

All the eigen values of a real symmetric matrix are real.
40.(B)
 $R_{1} \rightarrow R_{1}+2 R_{3}$

$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{4}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{4}$

$$
A \sim\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$R_{2} \rightarrow R_{2}+2 R_{1}$
$R_{3} \rightarrow R_{3}-R_{1}$
$R_{4} \rightarrow R_{4}+R_{1}$

$$
A \sim\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$R_{1} \rightarrow R_{3}$
$\mathrm{C}_{2} \leftrightarrow \mathrm{C}_{4}$
$R_{2} \leftrightarrow R_{3}$

rank $A=2$
nullity
$=n-\operatorname{rank} A$
$=4-2$

2
41.(D) Since $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{r}=3\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right) \cdot(x \hat{i}+y \hat{j}+z \hat{k}) \\
& =3 \\
& \vec{\nabla}(\vec{\nabla} \cdot \vec{r}) \vec{r}=3(\vec{\nabla} \cdot \vec{r}) \\
& =3 \times 3=3^{2} \\
& \begin{aligned}
\vec{\nabla}[\vec{\nabla}(\vec{\nabla} \cdot \vec{r}) \cdot \vec{r}] & =\vec{\nabla}\left[3^{2}\right] \cdot \vec{r} \\
& =3^{3}
\end{aligned}
\end{aligned}
$$

42. (B) Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$

$$
\begin{aligned}
& |\overrightarrow{\mathrm{a}}| \quad=1=\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2} \\
& |\overrightarrow{\mathrm{~b}}| \\
& =1=\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}+\mathrm{b}_{3}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& |\vec{a} \times \vec{b}|=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left[a_{2} b_{3}-b_{2} a_{3}\right]-\left[a_{1} b_{3}-b_{1} a_{3}\right]+\left[a_{1} b_{2}-a_{2} b_{1}\right] \\
& |\vec{a} \times \vec{b}| \quad=|\vec{a} \times \vec{b}||\vec{a} \times \vec{b}| \\
& =\left(a_{2} b_{3}-b_{2} a_{3}\right)^{2}+\left(a_{1} b_{3}-b_{1} a_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
& =a_{2}^{2} b_{3}^{2}+b_{2}^{2} a_{3}^{2}+a_{1}^{2} b_{3}^{2}+b_{1}^{2} a_{3}^{2}+a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}-2 a_{2} b_{2} a_{3} b_{3}-2 a_{1} b_{1} a_{3} b_{3}-2 a_{1} b_{1} a_{2} b_{2}
\end{aligned}
$$

$$
=\left(1-a_{4}^{2}-a_{3}^{2}\right) b_{3}^{2}+b_{2}^{2} a_{3}^{2}+a_{1}^{2} b_{3}^{2}+\left(1-a_{1}^{2}-a_{2}^{2}\right) b_{1}^{2}+\left(1-a_{2}^{2}-a_{3}^{2}\right) b_{2}^{2}+a_{2}^{2} b_{1}^{2}-2 a_{2} b_{2} a_{3} b_{3}
$$

$$
-2 a_{1} b_{1} a_{3} b_{3}-2 a_{1} b_{1} a_{2} b_{2}
$$

$=b_{4}^{2}+b_{2}^{2}+b_{3}^{2}-a_{1}^{2} b_{1}^{2}-a_{2}^{2} b_{2}^{2}-a_{3}^{2} b_{3}^{2}-2 a_{1} b_{1} a_{3} b_{3}-2 a_{1} b_{1} a_{2} b_{2}-2 a_{2} b_{2} a_{3} b_{3}$
$=1-\left[a_{1}^{2} b_{1}^{2}=a_{2}^{2} b_{2}^{2}+a_{3}^{2} b_{3}^{2}+2 a_{1} b_{1} a_{3} b_{3}+2 a_{1} b_{1} a_{2} b_{2}+2 a_{2} b_{2} a_{3} b_{3}\right]$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& =1-(\vec{a} \cdot \vec{b})^{2} \\
\Rightarrow \quad & |\vec{a} \times \vec{b}|+(\vec{a} \cdot \vec{b})^{2}=1
\end{aligned}
$$

43. (C) Let $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2=0$
on diff w.r.to x

$$
\begin{aligned}
& 3 x^{2} \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}-6 x-6 y \frac{d y}{d x}=0 \\
&\left(\frac{d y}{d x}\right)=\frac{6 x}{3 x^{2}+3 y^{2}-6 y} \\
&\left(\frac{d y}{d x}\right)_{(1,0)}=\frac{6}{3}
\end{aligned}
$$

$$
=2
$$

Tangent vector is given by

$$
\begin{aligned}
& (j-0)=2(i-1) \\
& 2 i-j-2=0
\end{aligned}
$$

44.(C) Let angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be $\theta_{1}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ be θ_{2} and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\mathrm{c} \times \mathrm{d}$ be θ.

$$
\mathbf{a} \perp \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}} \perp \overrightarrow{\mathbf{d}},(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \|(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})
$$

So $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\mathrm{k}(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$ and $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\mathrm{k}(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})$
$\Rightarrow \quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}=\mathrm{k}(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{c}}$ and $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{d}}=k(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}}) \cdot \overrightarrow{\mathbf{d}}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0 \quad$ and $\quad[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \mathbf{d}]=0$
$\Rightarrow \overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{d}}$ vectors so options (a) and (b) are incorrect.

Let $\overrightarrow{\mathbf{b}} \| \overrightarrow{\mathbf{d}} \quad \Rightarrow \overrightarrow{\mathbf{b}}= \pm \overrightarrow{\mathbf{d}}$

As $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=1 \quad \Rightarrow \quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{b}})= \pm 1$
$\Rightarrow[\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \mathbf{b}]= \pm 1$
$\Rightarrow[\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{b}} \times(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})]= \pm 1 \Rightarrow \overrightarrow{\mathbf{c}} \cdot[\overrightarrow{\mathbf{a}}-(\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}) \overrightarrow{\mathbf{b}}]= \pm 1$
$\Rightarrow \quad \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}= \pm 1 \quad(\because \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0)$
which is a contradiction so option (c) is correct.
Let option (d) is correct
$\Rightarrow \quad \overrightarrow{\mathbf{d}}= \pm \overrightarrow{\mathbf{a}}$
and

As $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{c}} \times \mathbf{d})=1$
$\Rightarrow \quad(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})= \pm 1$
which is a contradiction so option (d) is incorrect.
Alternatively option (c) and (d) may be observed from the given figure

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
45. (C) Given, $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$
$\Rightarrow \int \frac{y}{\sqrt{1-y^{2}}} d y=\int d x$
$\Rightarrow-\sqrt{1-y^{2}}=x+c \Rightarrow(x+c)^{2}+y^{2}=1$
Here, centre $(-\mathrm{c}, 0)$; radius $=1$
46. (A) Given, $\quad \frac{d y}{d x}=\frac{-\cos x(y+1)}{2+\sin x}$

$$
\Rightarrow \frac{d y}{y+1}=\frac{-\cos x}{2+\sin x} d x
$$

On integrating both sides

47. (A) Given, $x d y=y(d x+y d y), y>0$

$$
\Rightarrow \quad x d y-y d x \quad=y^{2} d y
$$

Toll Free: 1800-2000-092
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad \frac{x d y-y d x}{y^{2}}=d y \\
& \Rightarrow \quad d\left(\frac{x}{y}\right)=-d y
\end{aligned}
$$

On integrating both sides, we get

$$
\frac{x}{y}=-y+c
$$

Since,

$$
y(1)=1 \quad \Rightarrow x=1, y=1
$$

\therefore
C $=2$
\therefore Eq. (i) becomes, $\quad \frac{x}{y}+y=2$
Again, for $x=-3$
$\Rightarrow \quad-3+\mathrm{y}^{2}=2 \mathrm{y}$
$\Rightarrow \quad y^{2}-2 y-3 \quad=0$
$\Rightarrow \quad(y+1)(y-3)$
$=0$
As $y>0$ take $y=3$, neglecting $y=-1$
48. (C)

Here
$P=-\frac{x-2}{x(x-1)}$

$$
=-\frac{2}{x}+\frac{1}{x-1}
$$

$$
\begin{aligned}
e^{\int P d x} & =e^{-2 \log x+\log (x-1)} \\
& =e^{\log \frac{x-1}{x^{2}}}
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=\frac{x-1}{x^{2}}
$$

49.(C) Given I.p.p. is

Maximize $x_{1}+3 x_{2}$
s.to

$$
\begin{aligned}
& 3 x_{1}+x_{2} \leq 2 \\
& x_{1} x_{2} \geq 0
\end{aligned}
$$

Graphical representation.

The shaded region $O A B$ is optimal region for given $L p p$. and $B(0,3)$ gives
optimum value of the objective function which is $=9$
50.(B) Since, $P(A / \bar{B})+P(\bar{A} / \bar{B})=1$
$\therefore \quad \mathrm{P}$

$$
P(\bar{A} / \bar{B})=1-P(A / \bar{B})
$$

51.(B) Here, $P\left(u_{i}\right)=k i, \sum P\left(u_{i}\right)=1$

$$
\Rightarrow \quad k \quad=\frac{2}{n(n+1)}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\therefore \quad \lim _{n \rightarrow \infty} P(W) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i^{2}}{n(n+1)^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n(n+1)(2 n+1)}{6 n(n+1)^{2}}=\frac{2}{3}
\end{aligned}
$$

52. (C) Given $\mathrm{y}_{0}=1, \mathrm{y}_{1}=3, \mathrm{y}_{2}=9, \ldots, \mathrm{y}_{3}=?, \mathrm{y}_{4}=81$.

Four values of y are given. Let y be polynomial of degree 3 therefore we have $\Delta^{4} y_{0}=0$
or

$$
(E-1)^{4} y_{0} \quad=0
$$

or $\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) y_{0} \quad=0$
or

$$
E^{4} y_{0}-4 E^{3} y_{0}+6 E^{2} y_{0}-4 E y_{0}+y_{0}=0
$$

or

$$
\mathrm{y}_{4}-4 \mathrm{y}_{3}+6 \mathrm{y}_{2}-4 \mathrm{y}_{1}+\mathrm{y}_{0} \quad=0
$$

Substituting the values of $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{4}, we get

$$
81-4 y_{3}+6 \times 9-4 \times \beta+1
$$

$$
=31 \text {. }
$$

We now have two paths that give different values for the limit and so the limit doesn't exist.
53. (A) The linear constraints are $x+2 y \leq 400, x+y \leq 300$
and $x, y \geq 0$. Also $\operatorname{Maxz}=300 x+400 y$.

Toll Free: 1800-2000-092
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Hence the region is bounded.
54.(C) Here, $P(A \cup B)=\frac{3}{5}$ and $P(A \cap B)=\frac{1}{5}$. So, from the addition theorem,

$$
\begin{aligned}
& \frac{3}{5}=P(A)+P(B)-\frac{1}{5} \\
& \text { or } \frac{4}{5}=1-P(\bar{A})+1-P(\bar{B}) \\
& \therefore \quad P(\bar{A})+P(\bar{B})=2-\frac{4}{5}=\frac{6}{5} .
\end{aligned}
$$

Hence (c) is correct answer.
55.(A)

Hence events A and B are not mutually exclusive.
\therefore Statement II is incorrect.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)} \Rightarrow P(B)=\frac{1}{2}$
$\because P(A \cap B)=\frac{1}{8}=P(A) \cdot P(B)$
\therefore events A and B are independent events.
$P\left(\frac{A^{c}}{B^{c}}\right)=\frac{P\left(A^{c} \cap B^{c}\right)}{P\left(B^{c}\right)}=\frac{P\left(A^{c}\right) P\left(B^{c}\right)}{P\left(B^{c}\right)}=\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{2}{1}=\frac{3}{4}$

Hence statement I is correct.
Again $P\left(\frac{A}{B}\right)+P\left(\frac{A}{B^{c}}\right)=\frac{1}{4}+\frac{P\left(A \cap B^{c}\right)}{P\left(B^{c}\right)}$
$=\frac{1}{4}+\frac{P(A)-P(A \cap B)}{P\left(B^{c}\right)}=\frac{1}{4}+\frac{\frac{1}{4}-\frac{1}{8}}{\frac{1}{2}}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
Hence statement III is incorrect.
56.(C) Given L.P.P Max

$$
Z=5 x_{1}+2 x_{2}
$$

$$
x_{1}+x_{2} \geq 3
$$

$$
x_{1}, x_{2} \geq 0
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

The region of feasible solutions is the shaded area
Hence z can be made arbitrarily large and the problem has no finite maximum value of Z. This problem said to have unbounded solutions.
57. (C)1. $X=\left\{\left[x_{1}, x_{2}\right] ; x_{1} x_{2} \leq 1 x_{1} \geq 0, x_{2} \geq 0\right\}$

2. $x=\left\{\left[x_{1}, x_{2}\right] ; x_{2}-3 \geq-x_{1}^{2}, x_{1} \geq 0, x_{2}=0\right\}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

3. $X=\left\{\left[x_{1}, x_{2}\right] ; x_{1} \geq 2, x_{2} \leq 3\right\}$

5. $\mathrm{X}=\left\{\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] ; \mathrm{x}_{1}^{2},+\mathrm{x}_{2}^{2} \geq 1, \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2} \leq 4\right\}$

Only [C] is convex set.
58. (A) $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap)-P(B \cap C)-P(A \cap B)-P(C \cap A)+P(A \cap B \cap C)$
$=0.6+0.4+0.5-0.2-P(B \cap C)-0.3+0.2=1.2-P(B \cap C)$
because $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\Rightarrow \quad 0.8=0.6+0.4-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

But $0.85 \leq P(A \cup B \cup C) \leq 1$
$\therefore \quad 0.85 \leq 1.2-P(A \cup B \cup C) \leq 1 \Rightarrow 0.2 \leq P(B \cap C) \leq 0.35$

Hence (a) is the correct answer.
59.(A) $\quad P\left(\left(E_{1} \cup E_{2}\right)\right) \cap\left(\bar{E}_{1} \cup \bar{E}_{2}\right)$
$=P\left(\left(E_{1} \cup E_{2}\right) \cap\left(\overline{E_{1} \cup E_{2}}\right)\right)=P(\phi)=0 \leq \frac{1}{4}$.
Hence (a) is the correct answer.
60. (A) Let E_{i} be the event of a person to get into an accident. Then $P\left(E_{j}\right)=p \forall i P$ (at least one man meet with an accident)

$$
\begin{aligned}
& =P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right) \\
& =1-P\left(\bar{E}_{1} \cup \bar{E}_{2} \cup \ldots \cup \bar{E}_{n}\right)=1-P\left(\bar{E}_{1} \cap \bar{E}_{2} \cap \bar{E}_{n}\right) \\
& =1-P\left(\bar{E}_{1}\right) P\left(\bar{E}_{2}\right) \ldots P\left(\bar{E}_{n}\right)=1-(1-p)(1-p) \ldots(1-p) \\
& =1-(1-p)^{n}
\end{aligned}
$$

Hence P (atleast one man meets with an accident/a person is chosen)
61.(C) Let $P(1+\Delta)^{-1 / 2} A$

$$
=\frac{1}{n}\left(1-(1-p)^{n}\right) .
$$

if $\mathrm{E}=1+\Delta \Rightarrow \mathrm{P}=\mathrm{E}^{-1 / 2} \Delta$
$=\delta$ (central difference operator)
62.(B) Since $R \cap R^{\prime}$ are not disjoint, there is at least one ordered pair, say, (a, b) in $R \cap R^{\prime}$.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
but $(a, b) \in R^{\prime} \Rightarrow(a, b) \in R$ and $(a, b) \in R^{\prime}$
since R and R' are symmetric relations, we get
$(b, a) \in R$ and $(b, a) \in R^{\prime}$
and consequently $(b, a) \in R \cap R^{\prime}$
similarly any other ordered pair $(c, d) \in R \cap R$ ', then we must also have, (d, c) $\in R \cap R$.
Hence $R \cap R^{\prime}$ is symmetric.
Hence (b) is the correct answer.
63.(B) Statement B is not true

By venn diagram
now check if for $A \cup B-A$
we get the difference
$\Rightarrow A-B \neq(A \cup B)-A$
64.(A) Error term in trapezoidal rule is given by -

here $b=1.4 \quad a=0.2$

65.(D) We form a difference table

$$
X \quad x
$$

y

$$
\Delta\binom{=\delta}{x+\frac{1}{2} h}
$$

$\Delta^{2} \quad \Delta^{3}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$0.7-3 \quad 0.644218$

0•8-2
$0 \cdot 717356$
65971
0.9-1
0.783327

58144
$1.0 \quad 0$
0.841471

48736
$1 \cdot 1 \quad 1$
0.891207

40832
1.22
0.932039
$1.3 \quad 3$
0.963558
$\frac{d y}{d x}=\frac{1}{2 h}\left[y_{1}-y_{-1}-\frac{1}{6}\left(\Delta^{2} y_{1}-\Delta^{2} y_{-1}\right)+\frac{1}{30}\left(\Delta^{4} y^{-}-\Delta^{4} y_{-1}\right)-\ldots\right]$
$\therefore\left(\frac{d y}{d x}\right)=\frac{1}{0.2}\left[0.891207-0.783327+\frac{1}{6}(0.008904-0.007827)+\frac{1}{30}(0.000087-0.000079+\ldots)\right]$
$=0.54030$.
66. (D) Let
then we have

$$
\begin{aligned}
f\left(x_{1}\right) & =x^{4}-12 x+7 \\
f^{\prime}(x) & =4 x^{3}-12 \\
x_{0} & =2
\end{aligned}
$$

Let
From eqns. (i) and (ii), we get

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
f\left(x_{0}\right)=f(2)=2^{4}-12.2+7=-1
$$

and

$$
f^{\prime}\left(x_{0}\right) \quad=f^{\prime}(2)=4(2)^{3}-12=20
$$

Applying Newton's method, we get

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=2-\frac{(-1)}{20}=\frac{41}{20}=2.05
$$

and

$$
\begin{gathered}
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
=2.05-\frac{(2.05)^{4}-12(2.05)+7}{4(2.05)^{2}-12}=2.6706
\end{gathered}
$$

Hence, the root of the equation is 2.6706
67.(B) Forward difference table is given by

on Comparing we get

$$
a=39 \quad b=18 \quad c=6
$$

68.(A) $A \times B=\{(1,2)(1,5),(2,2),(2,5)\}$
$A \times C=\{(1,5),(1,7),(2,5),(2,7)\}$
$\therefore(A \times B) \cap(A \times C)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=\{(1,5),(2,5)\}
$$

69. (D) Let us define the events:
A: X speaks the truth,
B : Y speaks the truth

Then A and B represent the complementary events that X and Y tell a lie respectively. We are given :

$$
P(A)=\frac{3}{3+2}=\frac{3}{5} \quad \Rightarrow \quad P(\bar{A})=1-\frac{3}{5}=\frac{2}{5}
$$

and

$$
P(B)=\frac{5}{5+3}=\frac{5}{8}
$$

$$
\Rightarrow \quad P(\bar{B})=1-\frac{5}{8}=\frac{3}{8}
$$

The event E that X and Y contradict each other on an identical point can happen in the following mutually exclusive ways:
(i) X speaks the truth and Y tells a lie, i.e., the event $A \cap \bar{B}$ happens,
(ii) X tells a lie and Y speak the truth, i.e., then eventh $(\bar{A}) B$ happens.

Hence by addition theorem of probability, the required probability is given by :
$P(E) \quad=P(i)+P(i i)=P(A \cap \bar{B})+P(\bar{A} \cap B)$

$$
=P(A) \times P(\bar{B})+P(\bar{A}) \times P(B)[\text { Since } A \text { and } B \text { are independent }]
$$

Hence A and B are likely to contradict each other on a identical point in 47.5% of the cases.
70.(A) Let $X \sim B(n, p)$. Then we are given : Mean $=n p=4 \quad \ldots(1)$ and $\operatorname{Var}(X)=n p q=\frac{4}{3}$.

Dividing, we get $q=\frac{1}{3} \Rightarrow p=\frac{2}{3}$. Substituting in (1), we obtain $n=\frac{4}{p}=\frac{4 \times 3}{2}=6$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\therefore P(X \geq 1)=1-P(X=0)=1-q^{n}=1-\left(\frac{1}{3}\right)^{6}=1-\frac{1}{729}=0.99863$.
71.(B) since $x \sim P(X)$
$P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$
here $\lambda=2$

$$
\begin{aligned}
P(X=2 \mid X>1) & =\frac{P(X=2 \cap X>1)}{P(X>1)} \\
& =\frac{P(X=2)}{P(X>1)}
\end{aligned}
$$

$$
=\frac{P(X=2)}{1-P(X<1)}=\frac{\frac{e^{-2} 2^{2}}{2!}}{1-\left(e^{-2}+2 e^{-2}\right)}
$$

$$
=\frac{2}{e^{2}-3}
$$

72. (B) $P\left(A^{c}\right)=0.3 \Rightarrow \quad P(A)=0.7$

$$
P(B)=0.4 \quad \Rightarrow \quad P\left(B^{c}\right)=0.6
$$

$$
P\left(A \cup B^{c}\right)=P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right)
$$

$$
\begin{aligned}
& =0.7+0.6-0.5 \\
& =0.8 \\
& P\left[B \mid A \cap B^{C}\right]=\frac{P\left(B \cap\left(A \cup B^{c}\right)\right]}{P\left(A \cup B^{c}\right)} \\
& \\
& =\frac{P(B \cap A)}{P\left(A \cup B^{c}\right)} \\
& P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow P(A & \cap B)=P(A)-P\left(A \cap B^{c}\right) \\
& =0.7-0.5
\end{aligned} \\
& \quad=0.2
\end{aligned} \quad \begin{aligned}
& P\left[B \mid A \cup B^{c}\right)=\frac{0.2}{0.8}=\frac{1}{4}=0.25
\end{aligned}
$$

73. (B) $A \times B$ has $4 \times 2=8$ elements. Hence number of possible subsets are $2^{8}=256$. But these subsets consist of empty subset also, hence number of relations $=256-1=255$.
74.(B) We find that
$1(0)=0$
$\Rightarrow O(0)=1$
$1(1)=1,2(1)=2,3(1)=3,4(1)=4,5(1)=5,6(1)=0 \quad \Rightarrow Q(1)=6$
$1(2)=2,2(2)=4,3(2)=0$
$1(3)=3,2(3)=0$
$1(4)=4,2(4)=2,3(4)=0$
$1(5)=5,2(5)=4,3(5)=3,4(5)=2,5(5)=1,6(5)=0 \quad \Rightarrow O(5)=6$
Observing the orders of all the elements of G , we find

$$
O(1)=O(5)=6=O(G)
$$

Therefore $\mathrm{G}=[1]=[5]$ i.e. 1 and 5 are two generators of G .
75. (C) Every cyclic group have two trivial subgroup ϕ and itself
76.(D) Let

$$
\sigma=\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right)
$$

We know that
order of subgroup $=$ order of σ

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\left.\begin{array}{rl}
\sigma & =\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right) \\
\sigma^{2} & =\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right)\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right) \\
& =\left(\begin{array}{llll}
a & b & c & d \\
a & c & d & b
\end{array}\right)\left(\begin{array}{llll}
a & c & d & b \\
a & d & b & c
\end{array}\right) \\
& =\left(\begin{array}{llll}
a & b & c & d \\
a & d & b & c
\end{array}\right) \\
\sigma^{3}=\sigma^{2} \sigma & \\
& =\left(\begin{array}{llll}
a & b & c & d \\
a & d & b & c
\end{array}\right)\left(\begin{array}{llll}
a & d & b & c \\
a & b & c & d
\end{array}\right) \\
& =\left(\begin{array}{llll}
a & b & c & d \\
a & b & c & d
\end{array}\right) \\
\sigma^{3} & b \\
a & c
\end{array}\right)\left(\begin{array}{lll}
a & c & d
\end{array}\right) ~\left(\begin{array}{lll}
a & d
\end{array}\right)
$$

77. (B) Since a homomorphism ϕ is defined from $\left(z_{12} x_{12}\right)$ to $\left(z_{30} x_{30}\right)$ then
no. of distinct homomorphism are given by
$\operatorname{gcd}(12,30)=6$
78.(C)
$2^{7}=1(\bmod 9)$
$\left(2^{7}\right)^{7}$
$2^{49}=1(\bmod 9)$
$2.2^{49}=2(\bmod 9)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
2^{50}=2(\bmod 9)
$$

79.(B) Here 'a' = 75, 'h' = 5, 'a + hu' = 82
$\therefore a+h u=82 P 75+5 u=82 \Rightarrow 4=7 / 5=1.4$
\therefore From the given data we have the following difference table :

x	u_{x}	$\Delta \mathrm{u}_{\mathrm{x}}$	$\Delta^{2} \mathrm{u}_{\mathrm{x}}$	$\Delta^{3} \mathrm{u}_{\mathrm{x}}$
75	2459	-441		
80	2018	-44	-397	
85	1180	-838		457
90	402	-778	60	

From the above difference table, we find that $u_{75}=2459, \Delta u_{75}=-441, \Delta^{2} u_{75}=-397, \Delta^{3}$ $u_{75}=457$

Also Newton-Gregory's formula is
$y a+h u \quad=y a+\frac{u^{(1)}}{1!} \Delta y a+\frac{u^{(2)}}{2!} \Delta^{2}$ ya $+\frac{u^{(3)}}{3!} \Delta^{3}$ ya, which here reduces to

$$
u_{82}=2459+\frac{1.4}{1!}(-441)+\frac{(1.4)(1.4-1)}{2!}(-397)+\frac{(1.4)(1.4-1)(1.4-2)}{3!}(457)
$$

(Note)

$$
=2459-\frac{(1.4)(441)}{1}-\frac{(1.4)(0.4)}{2}(397)+\frac{(1.4)(0.4)(-0.6)}{6}(457)
$$

$$
=2459-617.4-111.16-25.592=1704.848=1705 \text { nearly } .
$$

80.(A) $M=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b\right.$ are real number $\}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Let $A=\left[\begin{array}{cc}a_{1} & b_{1} \\ -b_{1} & a_{1}\end{array}\right] \quad B=\left[\begin{array}{cc}a_{2} & b_{2} \\ -b_{2} & a_{2}\end{array}\right] \quad C=\left[\begin{array}{cc}a_{3} & b_{3} \\ -b_{3} & a_{3}\end{array}\right]$
A, B, C, $\in M$
(i) The sum and product of two matrices A and B with their elements as real number
i.e. M is closed with respect to addition and multiplication
(ii) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C} \quad \forall \mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{M}$
and $A,(B, C)=(A, B), C \quad \forall A, B, C \in M$
Therefore addition and multiplication of matrices is associative
(iii) Let $\mathrm{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in \mathrm{M}$ (null matrix)
i.e. $A+O=O+A=A \quad \forall A \in M$
(iv) $A \in M$ then there exist $-A \in M$ hen

$$
(-A)+(A)=0 \text { (null matrix) }
$$

(v) $A(B+C)=A B+A \cdot C$

Therefore matrix multiplication is distributive with respect to addition
(vi) Addition of matrices are commutative

But matrix multiplication is not commutative in general $A B \neq B A$
$\therefore\{\mathrm{M},+$,$\} is a non commutative ring$
81. (A) Since U and W are distinct $V+W$ contains U and W properly
and $\operatorname{dim}(U+W)>4$
But dim $(\mathrm{U}+\mathrm{W})$ cannot be greater then 6
Since $\operatorname{dim} \mathrm{V}=6$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Hence we have only two possibilities (a)
$\operatorname{dim}(U+W)=5$ or $\operatorname{dim}(U+W)=6$
$\mathrm{d}(\mathrm{U} \cap \mathrm{W})=\operatorname{dim} \mathrm{U}+\operatorname{dim} \mathrm{V}-\operatorname{dim}(\mathrm{U}+\mathrm{W})$
$=8-\operatorname{dim}(U+W)$
$=3$ or 2
82.(B) B_{1} and B_{3} are obviously not a basis for R^{3} as $\operatorname{dim} R^{3}=3$ and basis of R^{3} must contain exactly 3 elements
B_{2} gives the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1\end{array}\right]$
on applying elementary row and column transformation the matrix reduces into echelon form which is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 5
\end{array}\right]
$$

\Rightarrow it forms a basis for R^{3}

But gives the matrix

By elementary matrix transformations the given matrix reduces to $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
\Rightarrow not linearly independent
\Rightarrow does not form a basis

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
83. (D) Since the number of linear maps from U to V is given by $\operatorname{dim}[\operatorname{Hom}(U, V)]=m n$ where $\operatorname{dim} U$ $=\mathrm{m}$ and $\operatorname{dim} \mathrm{U}=\mathrm{x}$
here $\quad \operatorname{dim} R^{5}(R)=5$

$$
\operatorname{dim}\left(P_{3}(t)\right)=4
$$

$\Rightarrow \operatorname{dim}\left(\operatorname{Hom}\left(R^{5}, P_{3}(t)\right)=20\right.$
84. (C) There are two possible cases

Case 1 Five 1's, one 2's, one 3's
Number of numbers $=\frac{7!}{5!}=42$
Case 2 Four 1's, three 2's

$$
\text { Number of numbers }=\frac{7!}{4!3!}=35
$$

Total number of permutations $=42+35=77$
85. (C)

$$
[P(G) \neq 0]
$$

86.(D) The differential equation

$$
\frac{d^{2} y}{d x^{2}}-4 y \quad=1+x^{2}
$$

Auxiliary equation is

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& m^{2}-4=0 \\
&(m+2)(m-2)=0 \\
& m=2,-2 \\
& \text { C.F. }=c_{1} e^{2 x}+c_{2} e^{-2 x} \\
& \text { P.I. }=\frac{1}{D^{2}-4}\left(1+x^{2}\right) \\
&=-\frac{1}{4}\left(1-\frac{D^{2}}{4}\right)^{-1}\left(1+x^{2}\right) \\
&=-\frac{1}{4}\left(1+\frac{D^{2}}{4} \ldots\right)^{-1}\left(1+x^{2}\right) \\
&=-\frac{1}{4}\left(1+x^{2}+\frac{1}{2}\right) \\
&\left.\left.=-\frac{3}{8} \frac{x^{2}}{4}\right)^{2}\right) \\
& \therefore \text { General solution } \\
& y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{3}{8}+\frac{1}{4} x^{2}
\end{aligned}
$$

87.(A) The equation of circle whose centre $(\mathrm{a}, 0)$ and radius a

$$
\begin{align*}
(x-a)^{2}+(y-0)^{2} & =a^{2} \\
x^{2}+a^{2}-2 a x+y^{2} & =a^{2} \\
x^{2}-2 a x+y^{2} & =0 \tag{1}
\end{align*}
$$

Differentiating w.r. to x

$$
2 x-2 a+2 y \frac{d y}{d x}=0
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
2 a=2 x+2 y \frac{d y}{d x}
$$

The value of 2a put in (1)

$$
\begin{array}{cc}
x^{2}+y^{2}-x \quad\left(2 x+2 y \frac{d y}{d x}\right)=0 \\
x^{2}+y^{2}-2 x^{2}-2 x y \frac{d y}{d x}=0 \\
-x^{2}+y^{2}-2 x y \frac{d y}{d x}=0 \\
\therefore & 2 x y \frac{d y}{d x}+x^{2}-y^{2}=0
\end{array}
$$

which is required differential equation
88. (A) Here the auxiliary equation is $m^{2}+16=0$
\therefore C.F. $=\mathrm{C}_{1} \cos 4 \mathrm{x}+\mathrm{C}_{2} \sin 4 \mathrm{x}$, where C_{1} and C_{2} are arbitrary constants and
\therefore The complete solution is $y=$ C.F. + Pl.
or

$$
\begin{equation*}
y=C_{1} \cos 4 x+C_{2} \sin 4 x-(1 / 12) \sin 2 x \tag{i}
\end{equation*}
$$

Differentiating both sides of (i) with respect to x, we get

$$
\begin{equation*}
d y / d x=-4 C_{1} \sin 4 x+4 C_{2} \cos 4 x+\frac{1}{6} \cos 2 x \tag{ii}
\end{equation*}
$$

Given that $y=0, d y>d x=5 / 6$ when $x=0$
\therefore From (i) and (ki) we get $0=\mathrm{C}_{1}$ and $(5 / 6)=4 \mathrm{C}_{2}+\frac{1}{6}$
These give $C_{1}=0, C_{2}=\frac{1}{6}$
\therefore From (i) the required solution is
$y=\frac{1}{6} \sin 4 x+(1 / 12) \sin 2 x$ or $12 y=2 \sin 4 x+\sin 2 x$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
89.(D) P.I. $=\frac{1}{D^{2}+4 D-12}(x-1) e^{2 x}$

$$
=e^{2 x} \frac{1}{(D+2)^{2}+4(D+2)-12}(x-1)
$$

$$
=e^{2 x} \frac{1}{D^{2}+8 D}(x-1)
$$

$$
=e^{2 x} \frac{1}{8 D\left(1+\frac{1}{8} D\right)}(x-1)
$$

$$
=\frac{e^{2 x}}{8} \frac{1}{D}\left(1+\frac{1}{8} D\right)^{-1}(x-1)
$$

$$
=\frac{\mathrm{e}^{2 x}}{8} \frac{1}{\mathrm{D}}\left[(x-1)-\frac{1}{8}\right]
$$

$$
=\frac{1}{64}\left[4 x^{2}-9 x\right] e^{2 x}
$$

90.(C) (i) $\quad Q(2,5) \quad=0$ since $2<5$.
(ii) $\quad Q(12,5) \quad=Q(7,5)+1$

$$
=[Q(2,5)+1]+1=Q(2,5)+2
$$

91. (C) Let $r=x i+y j+z k$, then
$4 \times a=b \times a \Rightarrow(r-b) \times a=0$
$z=-1, x-y=2$
$r \times b=a \times b$
$\Rightarrow(\mathrm{r}-\mathrm{a}) \times \mathrm{b}=0$
$\therefore y=1, x+2 z=1$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\therefore \quad x=3, y=1, z=-1$
$\therefore r=3 i+j-k$
92. (A) $\phi A=\left(x y^{2} z\right)\left(x z i-x y^{2} j+y z^{2} k\right)=x^{2} y^{2} z^{2} i-x^{2} y^{4} z j+x y^{3} z^{3} k$
$\frac{\partial}{\partial z}(\phi A)=\frac{\partial}{\partial z}\left(x^{2} y^{2} z^{2} i-x^{2} y^{4} z j+x y^{2} z^{3} k\right)=2 x^{2} y^{2} z i-x^{2} y^{4} j+3 x y^{3} z^{2} k$
$\frac{\partial^{2}}{\partial x \partial z}(\phi A)=\frac{\partial}{\partial x}\left(2 x^{2} y^{2} z i-x^{2} y^{4} j+3 x y^{3} z^{2} k\right)=4 x y^{2} z i-2 x y^{4} j+3 y^{3} z^{2}$
$\frac{\partial^{3}}{\partial x^{2} \partial z}(\phi A)=\frac{\partial}{\partial x}\left(4 x y^{2} z i-2 x y^{4} j+\mid 3 y^{3} z^{2} k\right)=4 y^{2} z i-2 y^{4} j$
If $x=2, y=-1, z=1$ this becomes $4(-1)^{2}(1) i-2(-1)^{4} j=4 i-2 j$.
93.(B) The directional derivation is

$$
\frac{\partial f}{\partial s}=l \frac{\partial f}{\partial x}+m \frac{\partial f}{\partial y}+n \frac{\partial f}{\partial z} .
$$

Here $l=3 / 5 \sqrt{2}, m=4 / 5 \sqrt{2}, n=5 / 5 \sqrt{2}$ and

$$
\frac{\partial f}{\partial x}=2 x=2, \frac{\partial f}{\partial y}=2 y=4, \frac{\partial f}{\partial z}=2 z=6 \text { at }(1,2,3)
$$

\therefore then required directional derivative is df/ds $=52 / 5 \sqrt{2}$.

Also, grad $f=i \frac{\partial f}{\partial x}+j \frac{\partial f}{\partial y}+k \frac{\partial f}{\partial z}=2 i+4 j+6 k$.
\therefore Then maximum rate of increase of f is $|\operatorname{grad} f|=2 \sqrt{(14)}$.
94.(D) We have $V=[a b c]=4$
$\therefore \quad\left|\begin{array}{ccc}2 & -1 & -1 \\ 3 & 2 & 2 \\ 5 & -\lambda & 3 \lambda\end{array}\right|=4$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
or $28 \lambda=4$ and so $\lambda=1 / 7$
95.(D) It may be easily shown that

$$
f_{x}(0,0)=0=f_{y}(0,0)
$$

Also when $x^{2}+y^{2} \neq 0$

$$
\begin{aligned}
& \left|f_{x}\right| \quad=\frac{\left|x^{4} y+4 x^{2} y^{3}-y^{5}\right|}{\left(x^{2}+y^{2}\right)^{2}} \leq \frac{6\left(x^{2}+y^{2}\right)^{5 / 2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =6\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

Evidently

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y) \quad=0=f_{x}(0,0)
$$

Thus, f_{x} is continuous at $(0,0)$ and $f_{y}(0,0)$ exists
$\Rightarrow \mathrm{f}$ is differentiable at $(0,0)$.
96.(B) Out of the numbers $10,11,12,13, \ldots, 99$ those numbers the product of whose digits is 12 are $26,34,43,62$ i.e., only 4
$\therefore \quad p=P(E)=\frac{4}{90}=\frac{2}{45}$

$$
q=P(\bar{E})=1-P(E) \leqslant 1-\frac{2}{45}=\frac{43}{45}
$$

Hence, the probability that he will laugh atleast once
$=1-q^{3}$
$=1-\left(\frac{43}{45}\right)^{3}$
97.(B) Here, $\mathrm{p}=\frac{1}{2}, \mathrm{n}=8$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\therefore \quad q=1-p=1-\frac{1}{2}=\frac{1}{2}
$$

\therefore The binomial distribution is $\left(\frac{1}{2}+\frac{1}{2}\right)^{8}$

Also, $|x-4| \leq 2$
$\Rightarrow-2 \leq x-4 \leq 2$
$\Rightarrow \quad 2 \leq x \leq 6$
$\therefore \mathrm{p}(|\mathrm{x}-4| \leq 2)=\mathrm{p}(\mathrm{x}=2)+\mathrm{p}(\mathrm{x}=3)+\mathrm{p}(\mathrm{x}=4)+\mathrm{p}(\mathrm{x}=5)+\mathrm{p}(\mathrm{x}=6)$
$={ }^{8} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{2}+{ }^{8} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{3}+{ }^{8} \mathrm{C}_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{4}+{ }^{8} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5}+{ }^{8} \mathrm{C}_{6}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{6}$
$=\frac{{ }^{8} \mathrm{C}_{2}+{ }^{8} \mathrm{C}_{3}+{ }^{8} \mathrm{C}_{5}+{ }^{8} \mathrm{C}_{6}}{2^{8}}$
$=\frac{238}{256}=\frac{119}{128}$
98.(C) $P(A / \bar{B})=\frac{P(\bar{A} \cap \bar{B})}{P(\bar{B})}$

$$
=\frac{P(\bar{A} \cup \bar{B})}{P(\bar{B})}
$$

99.(A) Since, $P(X=2)=P(x=3)$, we get

$$
\begin{align*}
{ }^{5} \mathrm{O}_{2} \mathrm{p}^{2} \mathrm{q}^{3} & ={ }^{5} \mathrm{C}_{3} \mathrm{p}^{3} \mathrm{q}^{2} \\
\therefore \quad \mathrm{q} & =\mathrm{p} \\
1-\mathrm{p} & =p
\end{align*} \quad(\therefore \mathrm{q}=1-\mathrm{q})
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
\therefore \quad p=1 / 2
$$

100.(C) Total number of cases $=\mathrm{n}^{\mathrm{n}}$

We next find the number of favorable cases. For the first element we have nchoices. For the second element we have $(n-1)$ choices and so on.
\therefore The number of favorably cases

$$
\begin{aligned}
& =n(n-1)(n-2) \ldots 2 \cdot 1 \\
& =n!
\end{aligned}
$$

$\therefore \quad$ Required probability
101.(B) Total man hours work done by men supplied by $A, B, C=(20 \times 8 \times 6),(15 \times 9 \times 7),(10 \times$ 6×8)
and the wages must be in the ration of work done.
So Rs. 636 has to be divided among A, B, C in the ratio

$$
(20 \times 8 \times 6):(15 \times 9 \times 7):(10 \times 6 \times 8)=64: 63: 32
$$

$$
\text { C's share }=\frac{32}{159} \times 636=128
$$

102.(C) A did the work for 20 days, B did the work for $(20+12+28)=60$ days, C did the work for 28 days.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Let C alone can complete the work in x days.
Fraction of work did by A + Fraction of work did by B + Fraction of work did by C = 1
or

$$
\frac{20}{80}+\frac{60}{120}+\frac{28}{x}=1
$$

or

$$
x=28 \times 4=112 \text { days. }
$$

C alone can complete the work in 112 days
103.(A) Pattern is $1^{3}+1,2^{3}-2,3^{3}+3,4^{3}-4,5^{3}+5, \ldots \ldots$. Missing number
$=216-6=210$.

Required distance $=A \mathrm{E}$
$=5+9$
105.(C)

$$
=14 \mathrm{~km} .
$$

106.(B) An organization like UNO is meant to maintain peace all over and will always serve to prevent conflicts between countries. So, its role never ends. So, argument I does not hold. Also, lack of such an organization may in future lead to increased mutual conflicts and

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
international wars, on account of lack of a common platform for mutual discussions. So, argument II holds.

View Answer Workspace Report Discuss in Forum
107.(A) Clearly, besides interview, there can be other modes of written examination to judge candidates' motives. So argument II is not strong enough. However, the interview is a subjective assessment without doubt. So, argument I holds.
108.(D) Clearly, the distance of each village from Rampur is given in I and II. But nothing about their relative positions is mentioned. So, the distance between the two villages cannot be calculated.
109. (B) The pattern is :
$A-2=Y$
$P+1=Q$
$\mathrm{P}-2=\mathrm{N}$
$R+1=S$
$\mathrm{O}-2=\mathrm{M}$
$A+1=B$
$\mathrm{C}-2=\mathrm{A}$
$H+1=1$
Simifarly, "VERBAL" will be written as "TFPCYM".
110.(A) Some women may be mother.

Some mothers may be doctor.
Some doctors may be women.
Therefore, the correct figure is :

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

111.(B) The proper order of the words is as follows :
accident, doctor, Police,
$\begin{array}{lll}1 & 3 & 5\end{array}$
Lawyer, Judge
4
2
112.(D) The proper order of the words is as follows :

Bud,	Flower,
5	2
Fruit,	Seed
1	3

113.(C) The order of the given series is as follows:
$\mathrm{mbb} / \mathrm{ma} a / m b b / m / a \mathrm{a} / \mathrm{mb}$
Therefore, the requited letters are ' m a b a m '.
114.(A) The order of the given numbers in the question figure is as follows:

$\therefore ?=20$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
115.(D) As,

$$
2 \times 5 \times 1=20
$$

and
$4 \times 3 \times 6=72$
Similarly, $\quad 7 \times 2 \times ?=42$
$\therefore \quad \quad ?=\frac{42}{14}=3$
116.(A) As,

and

In the same way,
117.(B) On comparison

CLOUD and R A I N
$\downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow \downarrow \downarrow \downarrow$
5943211678

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

AROUND
Then,
614382
118.(A) In all the rest, the first thing is kept inside the second, while pencil is used to write.
119.(B) There are the stars in the sky, players in the stadium and students in the university, But moon is not in the planets.
120.(A) According to question,

Therefore, BF」Q is odd.
121.(B) In all the rest, the first number is thrice of the second. While in the alternative (B) it is four time.
122.(B) According to question

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Therefore, ' E ' is the brother-in-law of ' C '.
123.(B) Only alternative (B) diagram does not imply according to the given statement because it represents some female are only member and some female are only doctor, but some female are both doctor and as well as member, does not represent like this.
124.(C) As, from the given set

$$
4 \times 2=8+2=10
$$

and

$$
4 \times 3=12+3=15
$$

In the same way,

$$
5 \times 2=10+2=12
$$

and

$$
5 \times 3<=15+3=18
$$

125.(C) There is no data about the use of a compass in modern ships. Therefore, we can only say that this stafement is uncertain.
126.(A) As the lens is prime in the camera, In the same way bulb is prime in the flash.
127.(A) As house is given at rent, in the same way capital is given at interest.
128.(C) As
$N \cup M B E R \quad U N B M R E$
$123456 \rightarrow 214365$
In the same way,

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

G H O S T \quad| H G S O T |
| :--- |

129.(D) As,

In the same way,

130.(B) As,

In the same way

131.(B) As,
$19 \Rightarrow 19 \times 2-1=37$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

In the same way,

$$
26 \Rightarrow 26 \times 2-1=51
$$

132.(A) As,

$$
\begin{aligned}
\mathrm{CE} & \Rightarrow \mathrm{C} \times \mathrm{E} \Rightarrow 3 \times 5 \\
& \Rightarrow 15 \times 4+10=70
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
D E & \Rightarrow D \times E \Rightarrow 4 \times 5 \\
& \Rightarrow 20 \times 4+10=90
\end{aligned}
$$

133.(D) The order of the given letter series is as follows:

134.(C) The order of the given number series is as follows:

135.(D) The Commissioner only cites examples of cities X and Y and undertakes to beautify city Z. This does not imply that he has worked in cities X and Y. So, I do no follow. Also, nothing about people's response to the state of the city can be deduce from the statement. Thus, II also does not follow.
136.(B) Chaaru is Bomans's paternal grandmother and Aliya's maternal grandmother.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Therefore, chaaru is the mother of Boman's father and Aliya's mother.
Dinkar is Boman's maternal grandfather and Aliya's paternal grandfather.
Therefore, Dinkar is the father of Boman's mother and Aliya's father.
Now, Fenil is Aliya's father and Geet is Boman's mother. Esha is the mother of Fenil and Geet.

Therefore, Esha is Dinkar's wife.
Now, Hitarth is Fenil and Geet's father-in-law. So Hitarth is the father of Fenil's wife and Geet's husband.

Therefore, Hitarth is Chaaru's husband.
llesh is Geet's husband. So Fenil is Ilesh's brother-in-law. Jugal is llesh's brother-in-law's son.

Since llesh has only one brother in law, Jugal has to be Fenil's son. Jugal is also Kajri's son. Therefore, Kajri is Fenil's wife.

The data mentions "Her cousin Boman" with respect to Aliya.
Hence, Aliya has to be female while Boman's gender is unclear.
Thus, the final family tree is as shown below. Though Hitarth and Chaaru are shown below Esha and Dinkar, they belong to the same generation. This representation is just to ensure ease in drawing the family tree.

Now, Dinkar's daughter is Geet and Jugal's father is Fenil.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

From the family tree, Geet is fenil's sister.
137.(D) From the family tree in the solution to the first problem, Esha chaaru, Kahri, Geet and Aliya are definitely females.

However, Boman's gender is not known.
Hence the total number of females in the family can be either 5 or 6 .
Hence, a unique number cannot be determined.
138.(D) From the family tree in the solution to the first problem, Hitarth is Boman's paternal grandfather. At the same time, Hitarth is also kajri's father.
139.(D) From the family tree in the solution to the first problem, Aliya, Jugal and Boman are the grandchildren of Esha.

However, Boman's grandfather is not known.
Hence, the exact number of grandsons cannot be found out.
It can be either 1 or 2 .
140.(C) From the family tree in the solution to the first problem, Boman's aunt is Kajri.

Kajri's in-laws are Dinkar and Esha.
141.(B) All the people mentioned (except students) repair and mend things.
142.(B) All the items mentioned (apart from books) are edible.
143.(D) Let the heaviest planet is numbered 1 and the lightest planet is numbered 6.

Hence, the third lightest planet will correspond to the number 4.
It is given that the number of planets lighter than Mars was equal to the number of planets heavier than Venus.

Note that if Mars is the lightest and Venus is the heaviest, there is no planet lighter than Mars or heavier than Venus.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Even in this case, the number of planets lighter than Mars is equal to the number of planets heavier than Venus.

Hence, the positions of Mars and Venus can be one of (1,6), (2,5), (3,4), (4,3), (5,2), (6,1).
Let the weights of planets Jupiter, Mars, Mercury, Saturn, Venus and Pluto be J,ma, me, s, v , and p respectively.

From the data given,
$\mathrm{s}>\mathrm{ma}>\mathrm{v}$ and $\mathrm{me}>\mathrm{p}$
Hence, Mars cannot be the heaviest planet and the combination (1,6) is ruled out.
Moreover, since Mars is heavier than Venus, the positional number for Mars has to be less than that of Venus.

Hence, the combinations $(4,3),(5,2)$ and $(6,1)$ are also ruled out.
Now, Saturn is not the heaviest planet.
Hence, Mars cannot be the 2nd heaviest planet.
Hence, the combination $(2,5)$ is also not correct.
Hence, the correct positions of Mars and Venus are 3 and 4 respectively.
Hence, Mars is the 3rd heaviest planet; Venus is the 4th heaviest plant is also the 3rd lightest plant

The 4th heaviest planet is also the 3rd lightest planet.
Hence, Venus is the Brd lightest planet.
144. (C) If Jupiter is the heaviest planet, $j=1$.

Also, from the previous solution $s=2, m a=3$ and $v=4$.
Also, it is given that Mercury is heavier than Pluto.
Hence, $m e=5$ and $p=6$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Hence, Pluto is the lightest planet.
145.(C) Statement 3 and 4 contain contradictory statements regarding Charak securing a rank among the top three. Hence, this is a good starting point for assumption.

Assuming that Charak had secured a rank among top three would imply that second part in statement 3 would be false, I.e., Deepak would then have secured a rank among top three.

From statement 4: since the second part would be false, it implies that the first part of this statement has to be true, i.e., Ajay must have secured a rank among top three.

Hence, as per the assumption, Ajay, Charak an Deepak should be in the top three while Binoy and Goldy should not.

From statement 5: The first part would then be true thereby leading to a conclusion that Goldy did not secure rank among top three. This is in line with the above conclusion.

From statement 2: The second part has to be false, it was Deepak who must have secured to 2nd rank.

From statement 1: Since Deepak had secured 2nd rank it implies that the second part of the statement is true thereby leading to a conclusion that the first part is false and so Ajay must have secured 1st rank.

Since Ajay, Deepak and Charak are in the top three, Charak secured the 3rd rank.
146.(A) From the solution to the previous question, Ajay secured the 1st rank.
147.(B) It is likely that dispútes between two nations would be solved by the United Nations according to the given data. However, there is no direct evidence that they are actually
 solved by the UN. This statement is highly (not definitely) likely to be true.
148.(B) One can easily notice that arguments A and D are not directly related to the working hours of the government owned banks and hence can be marked as weak arguments. Argument D misses out on establishing a connection between large number of banking customers not
able to execute their banking needs within the stipulated time due to overcrowding or their requirement of extended banking hours.

Argument B is both directly connected and also has an important reason, that of the loss of customers to private banks.

Argument C is also directly related as the reduction in efficiency can adversety affect the working of the bank. Therefore, C is also a strong argument.
149.(A) Argument C may appear to have an important reason, but one should understand that though directly connected to the issue, it talks about only one part of the issue at hand. MBA colleges are not the only institutes of higher education

India having the most coaching institutes in the world is of no consequence to this issue at hand. Hence, arguments C and D are weak.

Argument A talks about the money savings and B tatks about the quality of higher educations, both of which are diréctly connected and are important reasons. Hence, arguments A and B are strong.
150.(C) Football, Players and Field all are different. Therefore,

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

